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ABSTRACT
We define preference elicitation as an interaction, consisting

of a sequence of computer queries and human implicit feedback
(binary choices), from which the user’s most preferred design can
be elicited. The difficulty of this problem is that, while a human-
computer interaction must be short to be effective, query algo-
rithms usually require lengthy interactions to perform well. We
address this problem in two steps. A black-box optimization ap-
proach is introduced: The query algorithm retrieves and updates
a user preference model during the interaction and creates the
next query containing designs that are both likely to be preferred
and different from existing ones. Next, a heuristic based on accu-
mulated elicitations from previous users is employed to shorten
the current elicitation by querying preferred designs from pre-
vious users (the “crowd”) who share similar preferences to the
current one.

1 Introduction
“What do people really like?” Getting an answer for this

question is the holy grail in the long pursuit of consumer prefer-
ence, and has attracted strong interest from the engineering de-
sign community. In this work, we call the problem of finding the
most preferred design for a user preference elicitation. We use
the term user for anyone whose preference is of interest and the
term design for products or services that can be tailored to meet
user preferences.

∗Address all correspondence to this author.

Marketing researchers starting in the 1970s introduced con-
joint analysis [17] to estimate the preference of a population as a
function of product attributes based on either consumer purchase
data or survey responses. Conjoint analysis has been reportedly
successful in the engineering design community [7,13,14,18,28],
but it has also been questionable, as the theoretical assumptions
may not always hold [6, 15]. In addition, modeling consumers’
preferences is different from identifying the most preferred de-
sign by a user. While the former can be treated as an estimation
problem, the latter is more an optimization one.

Computer science research took a more direct approach by
introducing Interactive Evolutionary Computation (IEC) [9, 11,
24, 25, 27]. This category of research considers the preference
of a consumer as a black-box function and optimizes it through
evolution using Genetic Algorithms [11,12] or Genetic Program-
ming [9,24]. During an IEC interaction, the computer presents a
query, i.e., a set of designs from where the user chooses her rel-
atively preferred ones. This binary comparison feedback, called
implicit feedback [8], is then parsed by the computer into fitness
of these designs, and a new query is created based on evolution-
ary operations, such as parent selection, crossover and mutation,
on the existing designs. This completes one iteration of IEC.
While IEC allows users to freely explore design possibilities,
convergence is doubtful due to human fatigue in long-term inter-
actions [27]. To circumvent this issue, Collaborative Interactive
Evolution (CIE) was introduced. Built upon the evolution-based
interaction capability of IEC, CIE incorporates crowd sourc-
ing so that a design preferred by a group of people can evolve
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through a sequence of human-computer interactions [23,26]. The
convergence issue still remains due to the arbitrary nature of evo-
lutionary operations. In fact, few established criteria exist on how
these operations will be tailored for a specific problem.

To this end, we previously introduced a query algorithm
for preference elicitation as an analogy to the response surface
method prevalent in solving black-box optimization problems
[21]: In each iteration a user preference model is retrieved by
classifying preferred designs against not-preferred designs from
the accumulated feedback. Designs for the next query will then
be sought that have high preference value based on this model
and also be away from existing designs. This query algorithm
based on learning (classification) is shown to outperform evolu-
tionary computation in simulated tests in most cases [20].

As a continuation to our previous work, this paper aims to
further enhance the convergence performance of preference elic-
itation by two improvements: (1) We first realize that the im-
plicit feedback from the user has richer information than merely
binary labels on designs. The feedback represents a compari-
son graph where each connected vertex pair shows the result of
a comparison. We show empirically that exploiting the infor-
mation from this comparison graph will help to retrieve a user
preference model during the interaction1. (2) We consider how
queries can be further shortened when a large amount of pref-
erence elicitations are recorded from a crowd. Various heuristic
query algorithms are investigated to this end. Simulation results
show that when preferences of the crowd form clusters, heuristics
based on crowd information can successfully reduce the average
query size needed to elicit their preferences.

The rest of this paper is organized as follows: Section 2 in-
troduces the query algorithm for preference elicitation and com-
pares the proposed methods against existing ones through sim-
ulated tests. Section 3 investigates how queries can be further
shortened with the help of previous elicitation experiences. We
then provide a review of related work in Section 4 and conclude
in Section 5.

2 Preference Elicitation from Individuals
This study assumes that each user under preference elicita-

tion acquires a preference function f : Xc → R, where Xc is a
pre-defined candidate set containing designs represented as vec-
tors. The objective of elicitation is to locate x∗ ∈Xc that has
the maximal preference value within a limited number of itera-
tions, called the optimally-preferred design. We consider elicita-
tion as a black-box optimization problem where the outputs are
implicit feedback, with a further assumption that the preference
function is fixed throughout the elicitation. In other words, the
user’s preference is not affected by the presence of queries. Al-

1In this work, we use the terms “interaction” and “elicitation” interchange-
ably.

though this assumption deserves inspection [16, 19], it is widely
adopted by most of the marketing and preference retrieval re-
search [3, 17]. This section introduces the proposed query algo-
rithm for eliciting individuals’ optimally-preferred designs. The
algorithm is developed based on the Efficient Global Optimiza-
tion (EGO) [10] algorithm originally designed for black-box op-
timization problems, thus is called EGO Query.

2.1 Preference retrieval with implicit feedback
We formulate a preference retrieval problem for the given

sample set X (n× p) with n samples from Xc, and the implicit
feedback G (n×n) where Gi j = 1 if and only if sample i is more
preferred than sample j according to the user. We introduce a
retrieval function

f̂ (x) = wT
Φ(x), (1)

where w (n× 1) is the user profile and Φi(x) is defined as the
similarity between x and the ith sample xi in X:

Φi(x) = exp(−λ ||xi−x||2), (2)

with the spread λ set to 1/p. From another perspective, Φ(x) is
a nonlinear mapping of x to a feature space.

We define the optimal estimator ŵ as the solution to the con-
vex problem in Equation (3) where C is a weighting parameter on
the slack variables ξ , representing the importance of training er-
ror:

(P1) minimize
ŵ

1
2

ŵT ŵ+C∑ξi j

subject to wT (Φ(xi)−Φ(x j))≥ 1−ξi j,

ξi j ≥ 0,
∀i, j such that Gi j = 1.

(3)

The solution to Equation (3) is derived equivalently from
its dual problem in Equation (4) where Q ∈ Rn×n is a ker-
nel matrix with elements Qab =< Φ(xia) − Φ(x ja),Φ(xib) −
Φ(x jb) >. Throughout this paper, the inner product < ·, · >
is implemented using a radial basis with spread λ = 1/p,
i.e., Qab = exp(−λ ||(xia − xib)||22) + exp(−λ ||(x ja − x jb)||22)−
exp(−λ ||(xia − x jb)||22)− exp(−λ ||(x ja − xib)||22). We also as-
sume that human choices are consistent with their preferences,
i.e., a user that prefers design A over design B will choose A over
B, in which case the weight C is set to a high value (C = 106) in
all simulated tests to avoid large slacks.
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(D1) minimize
α

1
2

α
T Qα−1T

α

subject to 0≤ α ≤C1.
(4)

An alternative kernel definition applied has the form Qab =
exp(−λ ||(xia − x ja)− (xib − x jb)||22). We call retrieval with this
kernel (P2) and show that although the kernel is not strictly
correct in theory, it leads to a better convergence performance
of EGO Query in various simulated tests when query sizes are
small. This further leads to a hybrid query method which outper-
forms both (P1) and (P2).

2.2 Balancing exploitation and exploration in a query
A new query xn+1 is made once the retrieval is updated

with the current data (X and G) to potentially get closer to the
optimally-preferred design. Such a query can be found by si-
multaneously exploiting the retrieval function and exploring the
candidate set Xc. In EGO research, a query is found by optimiz-
ing a merit function defined on Xc that combines the predictive
response surface from current observations and the uncertainty
in the prediction [10]. Although not theoretically proven, it is
recommended that queries at early stages shall focus more on
exploration while those at later stages on exploitation [22].

A variety of merit functions in literature follows this prin-
ciple, including expected improvement [10] and lower confident
bound [5]. It is, however, acknowledged that these merit func-
tions are usually highly nonlinear over Xc. As an example,
contours of merit functions after a few iterations in a simulated
elicitation process are illustrated in Figure 1 where brighter ar-
eas indicate higher merit function values. The crosses represent
queried designs, and are colored only to be differentiated from
the background. Notice that regions with the highest merit func-
tion values (bright areas circled out) are irregular, causing the
region to have multiple local optima and requiring a heuristic
search (branch-and-bound or genetic algorithm) to find its global
optimum. Considering that the EGO Query algorithm will gradu-
ally shift its focus from exploration to exploitation, a fairly large
amount of designs will be scattered in a small region close to
the optimal solution in later iterations, which could intensify the
nonlinearity of the merit functions and cause searches to be in-
efficient and impractical for real-time human-computer interac-
tions.

To resolve this computational cost issue, we introduce the
following merit function defined on Xc×R:

fmerit(d,x) = w1 f̂ (x)+w2d−
n

∑
i=1

exp(d−||x−xi||22). (5)

(a) Expected improvement (b) Lower confident bounding

FIGURE 1. Merit functions during the query process on a Branin
function, see Equation (7).

The variable d represents the minimum distance from x to all ex-
isting samples xi for i = 1, ...,n. This merit function follows the
goal of balancing exploration and exploitation: It tries to max-
imize the retrieval function f̂ (x) and the range of exploration
measured by d. The exponential penalty term in Equation (5) is
a numerical treatment to push the value of d close to its physical
meaning. The setting of the weights w1 and w2 determines the
focus on either exploration or exploitation and shall be calibrated
according to the scale of the two objectives. In this study we set

w1 =
∑

p
i=1(x

i
min− xi

max)
2

f̂max
, (6)

where xi
min and xi

max are the lower and upper bounds of the ith di-
mension of a design. The numerator of w1 represents the longest
distance in Xc and its denominator f̂max the optimum of f̂ ; w2 is
set at 1 for the first half of iterations during an elicitation, and is
reduced to 0.01 afterwards. This setting ensures the two objec-
tives to have values of the same scale at early stages of the query
process and shifts the focus to exploitation to improve conver-
gence at later stages.

2.3 Simulated test results

In this subsection we test the convergence performance of
EGO Query on minimizing a set of testing functions simulating
human preferences. The testing functions include Branin and
Six-hump Camelback functions of two dimensions and Gaussian
functions of 10, 20 and 30 dimensions, see Equations (7) to (9).
We set up the Gaussian functions to be difficult to optimize by
specifying a small spread value and biasing the optimal solutions
to one corner of Xc.
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Branin:

f (x,y) = (y− 5.1x2

4π2 +
5x
π
−6)2 +10(1− 1

8π
)cos(x)+10,

Xc = {x ∈ [−5,10], y ∈ [−5,10]}; (7)

Six-hump Camelback:

f (x,y) = (4−2.1x2 +
x4

3
)x2 + xy+(−4+4y2)y2,

Xc = {x ∈ [−3,2], y ∈ [−3,2]}; (8)

Gaussian:

f (x) =−exp(−5
N

∑
i=1

(xi−0.9)2),

Xc = {xi ∈ [−1,1] ∀i = 1, ...,N}, N = 10,20,30. (9)

Retrievals by (P1) and (P2) are compared. In addition, we
test a hybrid method that retrieves preference using (P2) for the
first half of the interaction and then switches to (P1). The merit
function applied on these three retrieval configurations follows
Equation (5). The MATLAB genetic algorithm toolbox [4] is
used to optimize the merit function. Two baseline query algo-
rithms are added for comparison. We first introduce a query
algorithm that represents an interactive genetic algorithm in a
human-computer interaction, referred to as “GA”. It uses the hy-
brid method for function retrieval and applies genetic algorithm
directly on the retrieved values at sampled designs. The second
baseline algorithm is introduced in [21], which considers user
feedback as binary classes, i.e., preferred designs against not-
preferred ones and the retrieval is thus based on a binary classi-
fication. This method is referred to as “Classification”. All tests
are repeated 20 times due to the random nature of genetic algo-
rithms in solving the merit function. Errors at each iteration are
measured as the gaps between the global optima and the minimal
objective value found up to that iteration. Figure 2 shows the test
results. Notice that the performances of “GA” and “Classifica-
tion” are overlapping in Gaussian tests with 20 and 30 dimen-
sions since they have negligible improvements within the given
query size.

One interesting finding from these results is that retrieval
by (P1) is not a good choice in short runs, but it outperforms
retrieval by (P2) in a long run in most cases. Our explanation
to this finding is that while (P2) violates user feedback, it may
have a better generalization error when observation is limited.
Retrieval by (P1), on the other hand, exploits the limited obser-
vations and may lead to inefficient queries at early stages. The
hybrid approach is inspired by this observation. We also see that

the proposed query method outperforms the baseline algorithms
by a large margin for these tests.

3 Heuristic Query with Crowd Elicitation Records
The individual elicitation process can be depicted as a path,

consisting of a sequence of vertices, see Figure 3. Each vertex
on a path contains queries made up to and feedback prior to this
iteration; each directed edge from a vertex contains the feedback
to the current query. We label the leaf vertex of a path with the
optimally-preferred design found for the user. Let the root vertex
contain the same initial guesses for all individuals. The paths
recorded from a crowd form a directed graph with the same root
vertex, called the elicitation graph as shown in Figure 3. We
attach a vector of costs pi to the corresponding leaf vertex vi. The
elements in pi represent the various numbers of queries that have
been made to reach vi in all previous elicitations. Denote p̄i as the
average cost of vertex vi. Both pi and p̄i for all existing vertices
in the graph are updated after some elicitations are recorded.

This section investigates how query strategies can be up-
dated based on the cumulative elicitation records from a crowd.
The intuition is that when optimally-preferred designs from the
crowd are clustered in Xc, an interaction can be shortened if we
observe similarity between the current user and some previous
user(s). The heuristic search works as follows: The hybrid EGO
Query algorithm will be used as the default query method. Af-
ter every m iterations with the default query, a heuristic query
is made based on the retrieved user preference. This query asks
the user to compare his current preferred design and one of the
optimally-preferred designs from previous users that have sim-
ilar preferences. Regardless of the user’s response, the default
search algorithm is switched back on after this heuristic query.

In order to be concise and clear, we limit our discussion to
pairwise comparison, i.e., every query contains only two designs
and the user must pick one out of the two, leading to a simplified
case where each new query contains one design.

3.1 Heuristic query
To perform a heuristic query, we collect a set of optimally-

preferred designs from previous users with similar preferences
to the current one, denoted as the similar candidate set Xs =
{x1,x2, ...,xm}. The similarity between the current user and any
previous user τ is measured as the angle between their profiles,
ŵs and ŵsτ correspondingly, at some iteration s:

similaritysτ =
ŵT

s ŵsτ

||ŵs||2||ŵsτ ||2
. (10)

We consider users similar to the current one as those who acquire
the maximum similarity. Once Xs is established, a heuristic de-
cision needs to be made on which design from Xs shall be picked
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(a) 2D Six-Hump Camelback function

(b) 2D Branin function

(c) 10D Gaussian function

(d) 20D Gaussian function

(e) 30D Gaussian function

FIGURE 2. Convergence comparisons on testing functions.

FIGURE 3. Individual elicitation recorded as a path

FIGURE 4. The elicitation graph formed from crowd paths

to present to the current user. Two heuristics are introduced be-
low.

1. (H1) Design with the most potential gain: This heuristic
picks the design that has the maximum average cost: xi∗

such that p̄i∗ = maxi p̄i, for i = 1, ...,m. The intuition here is
that by querying the most costly preferred design from sim-
ilar users, the query length can potentially be decreased the
most.

2. (H2) Design with the least potential cost: Let Xi be a set
of leaf vertices that are descendants of the ith element of
Xs. And let p̃i represent the averaged query cost when we
choose to query xi ∈Xs but it is not the optimally-preferred
design for the user:

p̃i =
1
|Xi|

|Xi|

∑
j=1

p̄i j , (11)

where xi j ∈Xi, ∀ j. The intuition here is to pick a candidate
design that leads to the minimum extra query size needed
when the heuristic query is not the optimally-preferred de-
sign.

3.2 Demonstration of H1 and H2
This subsection compares the performance of H1 and H2 on

an experiment where simulated users interact with the computer
in a sequence and the computer improves its query strategy (H1
or H2) based on the accumulated interaction records.
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FIGURE 5. Setup of an experiment to test H1 and H2. A set of 100
candidate designs are represented by the blocks. The left bottom block is
indexed as x1 and the top right one as x100. Optimally-preferred designs
are uniformly drawn from the grayed blocks.

3.2.1 Simulated user setup To start, we define Xc
as a finite set on R2:

Xc =
{

x ∈ R2,x1,2 ∈ {0,0.1, ...,0.9}
}
, (12)

with |Xc|= 100. The experiment simulates 1000 users interact-
ing with the computer in a sequence. To model the preferences of
these simulated users, we manually define an optimally-preferred
design set, and denote their indices as a set Iopt , shown in Fig-
ure 5 as the grayed blocks. A random sequence I of size 1000
is generated uniformly from Iopt so that xIi ∈Xc represents the
optimally-preferred design of user i. Accordingly, the preference
of user i is modeled as

fi(x) =−
100

∑
j=1

wi j exp(−||x−x j||22). (13)

Here wi j is the jth element of user i’s profile, defined as

wi j =

{
1, when j = Ii
0, otherwise . (14)

The above experiment setup has these properties: (1) each
user acquires a unimodal preference function where the optimal
solution belongs to Xc, and (2) the optimally-preferred designs
are clustered.

3.2.2 Algorithm setup The algorithm setup in this ex-
periment is as follows:

During each interaction, the heuristic query will be used af-
ter every 2 iterations. In case no users similar to the current one

can be found, the default hybrid EGO Query will be used in-
stead. This situation can happen when (1) no interaction has been
recorded, or (2) no interaction has gone through that many iter-
ations so that no previous user profile exists at that iteration, or
(3) all similarities measured are negative, indicating a large dis-
crepancy between the current user’s preference and all previous
users’. A random choice is made when multiple best candidates
from Xs exist, i.e., more than one candidate has the most poten-
tial gain (H1) or the least potential cost (H2).

While the elicitation graph is updated once a new elicitation
is done, the update of cost sets (p) associated with leaf vertices
will take place after every 1, 10 or 100 interactions during the
experiment. Frequent update (e.g., updating after every elicita-
tion) may take more advantage of the recorded elicitations, while
delayed update (e.g., updating after every 100 elicitations) may
form a better query strategy when more observations are col-
lected at the cost of not being adaptive enough. We set up tests
with different update frequencies in the experiment and observe
their performance.

The initial query contains the pair {x1,x100} for all interac-
tions.

3.2.3 Experimental results Figure 6 demonstrates
the effects of H1 and H2 under different update frequencies.
Simulated users enter the experiment in the same order across all
different experiment configurations. The performance measure
we report here is the number of queries used to reach optimally-
preferred designs. For visualization purposes, the results are av-
eraged over a span of 50 users and these average query sizes
represent the effectiveness of the heuristic query algorithm at dif-
ferent stages of the experiment. The performance of the hybrid
EGO Query algorithm without using knowledge from recorded
elicitations is shown as a baseline. This performance is not con-
stant throughout all the stages because each user group of 50 may
contain a different combination of optimally-preferred designs.

The baseline result is clearly outperformed by that of either
H1 or H2. In addition, comparison between results from H1 and
H2 favors H2 by a large margin. Not only does the average query
size in H2 decrease more, it also achieves a more stable per-
formance (around 4.5). A closer comparison of the two heuris-
tics can be found in Figures 7(a) and 7(b) where the query sizes
needed for each optimally-preferred design are tracked through-
out the experiment. The elicitation graph is updated once per
elicitation in these two figures. Clearly the query algorithm us-
ing H2 converges to an almost fixed strategy after interacting
with around 200 users, while that using H1 fails to converge.

We now discuss the effect of update frequency on the more
promising H2. Figures 7(b), 7(c) and 7(d) provide the query
sizes needed for each optimally-preferred design during the ex-
periment for the three different update frequencies. Examina-
tion of these figures shows that higher update frequency leads to
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(a) H1, 1 user/update

(b) H2, 1 user/update

(c) H2, 10 user/update

(d) H2, 100 user/update

FIGURE 7. Performance comparison between H1 and H2. Each col-
ored curve represents the query size required over the experiment for
one optimally-preferred design defined as a grayed block in Figure 5.
The elicitation graph is updated once per elicitation.

shorter adaptation period. In other words, the advantage of re-
sponding quickly to the accumulated observations overtakes its
drawback of being misled by insufficient observations.

3.3 Initial query update (H3)
In addition to the above heuristics, it is intuitive that the ini-

tial query shall contain designs that are more “relevant” to the

FIGURE 8. Demonstration of the effects of H2, fixed and adaptive
H3 heuristics in the same simulation experiment as before.

users. To this end, we propose to update the initial query with
the designs that are mostly preferred by previous users.

To verify this idea, we rerun the previous experiment, adding
to H2 the functionality of updating the initial query after every
200 interactions. We call this heuristic “fixed H3”. We discard
the previously built elicitation graph along with cost sets on leaf
vertices once the initial query is updated. This is plausible for
two reasons: (1) The average cost on each leaf vertex derived
from previous elicitations can be misleading when the initial
query is changed, and (2) H2 may converge to a stable query
strategy in a short run as observed in the previous discussion.
Therefore we are not losing too much information by discarding
previous records. Figure 8 compares the performance of fixed
H3 and H2, both updating cost sets after every elicitation. The
four vertical lines indicate the moments when the updates are
programmed to happen and the three solid lines indicate when
the initial queries are actually changed.

Examination of this figure reveals that the benefit of chang-
ing the initial guess is not instant. In fact, the performance always
gets worse right after the changes, which is reasonable since the
record has to be rebuilt. The benefit of updating the initial query
eventually takes place as the average query size gradually goes
below that of H2. With these observations, we propose an “adap-
tive H3” that keeps the current initial guess when no significant
change occurs in the distribution of optimally-preferred designs.
Formally, we group the leaf vertices into two clusters based on
their variable values. For each cluster, we assume that the ob-
served leaf vertices are realized from a normal distribution cen-
tered at x̄i, which has a maximum likelihood estimation x̄∗i as
the arithmetic center of cluster i. We then find two leaf vertices
from each cluster that are closest to their corresponding cluster
centers. Let the current initial guess be a set {xi}2

i=1. We mea-
sure how suitable the current initial query (a pair of designs) is at
representing the clusters of optimally-preferred designs:

7 Copyright c© 2012 by ASME



FIGURE 6. Demonstration of the effects of H1 and H2 in a simulation experiment. The horizontal axis represents 1000 simulated users coming into
the interaction in a sequence. The vertical axis represents the average query sizes needed for a group of 50 users. Each curve illustrates the changing
performance of the adaptive query algorithm with increasing knowledge about the crowd.

4L =

∣∣∣∣L({x∗i }2
i=1)−L({xi}2

i=1)

L({xi}2
i=1)

∣∣∣∣ , (15)

where

L({x∗i }2
i=1) =

2

∑
i=1

∑
j∈clusteri

−||x j−x∗i ||22. (16)

We set up this heuristic, the “adaptive H3”, in a way that the
above calculation is performed after every 100 elicitations, and
the initial query is only updated when 4L is over a threshold of
0.2. The performance of adaptive H3 is also shown in Figure 8.
The improvement from the fixed update is visible and expected,
since in this experiment there is no need to frequently change the
initial query once we settle it close to the two cluster centers.

3.4 Discussion
In this subsection we compare the performance of H2 and

adaptive H3 under a variety of experimental settings to verify
their usage in different scenarios.

3.4.1 Changing trend Adaptive H3 can be useful in
a situation where the distribution of optimally-preferred designs

FIGURE 9. Densities of the optimal designs along time. The five
figures show how the optimal designs are distributed at different stages
of the experiment. The grey scale indicates the frequency of occurence.

changes over time, simulating the changing trend in crowd pref-
erences. To show this, an experiment was conducted where the
users coming into the experiment will bear optimally-preferred
designs that form moving clusters as shown in Figure 9. We com-
pare the average query sizes needed in this scenario when using
adaptive H3, H2 and the default algorithm in Figure 10. The
improvement of adaptive H3 from other heuristics is significant.

3.4.2 Lack of clusters We examine the scenario
where optimally-preferred designs from users are not clustered.
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FIGURE 10. Demonstration of the effects of H2 and adaptive H3
heuristics in the changing trend experiment from Figure 9.

FIGURE 11. Demonstration of the effects of H2 and adaptive H3
heuristics when user preferences are diversified as shown in Figure 9.

Figure 11 shows the performance of H2, adaptive H3 and the de-
fault algorithm under a setup where optimally-preferred designs
are uniformly distributed in Xc. Here we only observe marginal
improvement from the default algorithm by using either H2 and
adaptive H3 as a heuristic. In addition, the difference between
H2 and adaptive H3 is negligible, which leads to the implica-
tion that changing the initial guess is only valuable when the
optimally-preferred designs are clustered.

3.4.3 Dimensionality of Xc Here we set up a candi-
date design set with 5 dimensions and 3 levels:

Xc =
{

x ∈ R5,x1,2,3,4,5 ∈ {0,0.5,1.0}
}
. (17)

Two experiments are conducted. One has optimally-preferred de-
signs uniformly spread in Xc (no clusters) for the 1000 simulated
users; the other has designs randomized from two clusters within
Xc and each cluster contains three designs, i.e., the optimally-
preferred designs of the simulated users are generated from the
set of six pre-defined designs. Figures 12 and 13 compare the
performance of adaptive H3 and H2 under the first and the sec-
ond experiment settings, correspondingly. Figure 12 shows that

FIGURE 12. Demonstration of the effects of H2 and adaptive H3
heuristics when user preferences are diversified. Candidate set has 5
dimensions and 3 levels.

FIGURE 13. Demonstration of the effects of H2 and adaptive H3
heuristics when user preferences are clustered. Candidate set has 5 di-
mensions and 3 levels.

neither heuristic query algorithm will outperform the default al-
gorithm when users’ preferences are diversified in a large design
space (high dimensionality of Xc). On the other hand, Figure 13
shows that when users’ preferences are clustered, the heuristic
queries have better performance over time by taking advantage
of the accumulated elicitation records, even when the dimension-
ality is high. As a matter of fact, the converged heuristic query
algorithm from adaptive H3 in Figure 13 starts by querying the
two cluster centers. Based on the user feedback, it picks an-
other design belonging to the chosen cluster. Since there are only
three possible guesses from each cluster, the maximum number
of queries is three (including the last query with obvious answer).
This adapted query strategy results in the average query size of
2.3 in the figure.

4 Related Work
The techniques presented in Section 2 are closely related to

preference retrieval with implicit feedback [8]. The idea of en-
hancing interactions based on crowd information in Section 3 is
inspired by recommender systems [1, 2]. In fact, the presented
work can be considered an extension of a recommender system
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in that we actively query users in order to optimize their prefer-
ences while a traditional recommender system passively provides
recommendations on demand.

5 Conclusion and Future Work
Understanding preferences is important in many design cre-

ation activities. The drastic increase in consumer data and inter-
action opportunities encourage us to rethink the mechanism of
capturing preference.

In this study, we defined “preference elicitation” as an inter-
action, consisting of a sequence of computer queries and human
feedback, from where the user’s most preferred design can be
found. In order for the query algorithm to be efficient so that it
fits in a short human-computer interaction, we introduced a so-
lution that utilizes recent developments in information retrieval,
recommender systems and global optimization. This proposed
method has two components: First, the query algorithm is de-
signed to retrieve and update a user preference model during the
interaction, ensuring the next query to contain designs that are
more likely to be preferred and different from existing ones. Sec-
ond, the interaction is further shortened by incorporating infor-
mation from previous elicitation records provided by users who
share similar preferences to the current user.

Near-future work involves an examination on how erroneous
human choice making and preference intransitivity will affect the
proposed query algorithms. The role of the weight C in the re-
trieval problem P1 must be scrutinized to create preference mod-
els with good generalization performance. An enhancement in
the heuristic query algorithm using crowd information is to in-
corporate user demographic data and explicit requests. Similarity
can be more accurately measured when such data exist besides
the retrieved user profile. A long-term extension of this work is to
replace the vectorized design representation with a graph-based
one. Similar to genetic programming where designs of different
structures can be explored, introducing a graph representation of
design enriches the possibility of design forms. Retrieval tech-
niques that deal with structured data need to be investigated.
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