
Proceedings of the ASME 2013 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2013
August 4-7, 2013, Portland, United States

DETC2013-13059

A SCALABLE PREFERENCE ELICITATION ALGORITHM USING GROUP
GENERALIZED BINARY SEARCH

Yi Ren∗
Mechanical Engineering
University of Michigan

Ann Arbor, Michigan, 48109
Email: yiren@umich.edu

Clayton Scott
Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan, 48109
Email: clayscot@umich.edu

Panos Y. Papalambros
Mechanical Engineering
University of Michigan

Ann Arbor, Michigan, 48109
Email: pyp@umich.edu

ABSTRACT
We examine the problem of eliciting the most preferred de-

signs of a user from a finite set of designs through iterative pair-
wise comparisons presented to the user. The key challenge is to
select proper queries (i.e., presentations of design pairs to the
user) in order to minimize the number of queries. Previous work
formulated elicitation as a blackbox optimization problem with
comparison (binary) outputs, and a heuristic search algorithm
similar to Efficient Global Optimization (EGO) was used to solve
it. In this paper, we propose a query algorithm that minimizes
the expected number of queries directly, assuming that designs
are embedded in a known space and user preference is a linear
function of design variables. Besides its theoretical foundation,
the proposed algorithm shows empirical performance better than
the EGO search algorithm in both simulated and real-user exper-
iments. A novel approximation scheme is also introduced to al-
leviate the scalability issue of the proposed algorithm, making it
tractable for a large number of design variables or of candidate
designs.

1 Introduction
A typical online shopping platform takes in a user query and

outputs a list of relevant designs (products). In most cases when
the list is too long to read through, users resort to sorting and
filtering tools to narrow down the search. In addition, a recom-
mender system can further guide users to products they might

∗Address all correspondence to this author.

be interested in by comparing their browsing behaviour and that
of other users [2]. While a combination of these methods helps
to locate preferred designs of users, better shopping experience
could be achieved if we can shorten the search list by incorpo-
rating users’ preferences better. Consider a user looking for a
new laptop as a running example. The user may prefer designs
within a certain budget. Yet a price tag beyond the budget limit
is not necessarily rejected if the laptop offers much better perfor-
mance. In this situation, the user may need to explore a variety
of price ranges, and search within each resulting sub-list. One
potential way to shorten the search is to introduce comparison
questions before generating the search list. For instance, one
may show a few laptop models and ask (query) the user which
design(s) he prefers more. Based on the response, another query
can be adaptively created with designs more relevant to the user.
In the running example, a set of laptops with the most preferred
price-performance combinations can be queried. Such an inter-
action helps down-scale the search list to include only the most
preferred designs of the user. In addition, unlike filtering and
sorting tools, the interaction encourages users to provide their
detailed preference information in an indirect manner. The col-
lected crowd preference can then be used to facilitate better de-
sign decision making. Like any human-computer interactions,
the queries we propose need to be short and efficient, leading to
the key question: How can queries be adaptively designed based
on user responses? We show in this paper that this problem can
be formulated as a group identification task [4] and that its so-
lution shares the theoretical foundation of the classic algorithm

1 Copyright c© 2013 by ASME

used in 20-question games. We then propose and test a novel
treatment to address the computational issue of the algorithm for
large design space and large design sets.

To be specific, we investigate a human-computer interaction
that identifies designs from a fixed set that are most preferred by
an individual. The interaction comprises a sequence of queries,
in the form of pairwise comparisons. Each query contains two
designs from the given design set X = {x1, x2, ..., xK} ∈ RD,
K being the total number of designs andD the number of design
variables (attributes). The individual user responds to each query
by evaluating and choosing one design according to his/her pref-
erence. The interaction terminates when one design is estimated
to be the most preferred design with probability one.

The challenge here is to present as few queries as possible
in eliciting the most preferred design. Interactive genetic algo-
rithms were previously introduced that use heuristics to find near-
optimal designs based on evolutionary operations [12,11]. More
recently a response-surface method was proposed that iteratively
refines a user preference model based on choice responses [6, 9]
and creates queries predicted to be preferred according to the
model [13]. This paper presents an algorithm that minimizes
directly the actual expectation of the query size, under a finite
design set. This approach is inspired by the Group Generalized
Binary Search (GGBS) algorithm for group identification, where
the objective is to identify the group label (e.g., category of dis-
ease) of an object (e.g., a patient) by querying “yes-no” questions
(e.g., “Do you have fever or not?”) [3, 4]. We consider rankings
of designs as “objects”. The rankings with design i being top
ranked constitute the ith “group”. Under this setting, finding
the most preferred design of a user is equivalent to identifying
a group. We show that GGBS can be directly applied and that it
outperforms the heuristic algorithm previously proposed in [13]
in both simulated and real-user experiments.

The paper is organized as follows: We define the problem
formally in the remainder of this introductory section. In Section
2, we discuss in detail a scalable GGBS algorithm to solved the
defined problem and then test the algorithm using simulations
in Section 3. A real-user experiment is conducted and results
reported in Section 4. Section 5 offers a discussion and conclu-
sions.

Problem statement
The individual preference on design xj is modeled as a lin-

ear utility uj = wTxj , where w is the unknown “partworth”
vector lying on a unit sphere: ||w||2 = 1. As a note, the norm of
w can be interpreted as the randomness in user responses: The
smaller the norm, the noisier user responses are. In this study, we
will assume that user responses are noiseless, making a variable
norm ofw unnecessary. We will discuss how this assumption can
be removed in future work.

The interaction consists of a sequence of pairwise com-
parison queries. A query with its response is represented by

q = (x(1), x(2)), where design x(1) is more preferred than de-
sign x(2), i.e, u1 > u2 (we can always flip the two designs if
the second design from the query is more preferred). We also as-
sume non-existence of indifferent pairs, i.e.,wT (x(1)−x(2)) 6= 0
for any query. The candidate query set is denoted as Q, contain-
ing all possible N = K(K − 1)/2 pairwise comparisons, where
K is the number of candidate designs. The individual partworth
vector w can be estimated based on query responses, as will be
shown in Problem (8) from Section 2.

We define a set of objects Θ = {θ1, θ2, ..., θM} where θ
is a ranking of designs, e.g., θ := x1 � x2 � ... � xK ,
induced by some w. Here M is the number of possible rank-
ings and M is usually much less than K! when a large amount
of designs are embedded in a low-dimensional space and util-
ity is a linear function of the design variables [8]. Each object
is then labeled with by its top ranked design, e.g., ym = 1
if θm = x1 � We denote by {Θk}Kk=1 the grouping of
Θ, where a “group” Θk = {θm ∈ Θ : ym = k} represents
the rankings for which design k is the top ranked. The set
ΠΘ = {πθ1 , ..., πθM }, containing πθm = Pr(θ = θm), repre-
sents the probabilities of the true ranking being θm. Following
this, we can use Π = {πΘ1 , ..., πΘK} to represent the proba-
bility masses of each design being the most preferred one, i.e.,
πΘk =

∑
θ∈Θk πθ. The true Π, however, is induced by the true

distribution of w of the population and is usually unknown. We
discuss in Section 2 how it can be approximated and updated
when preferred designs from users are collected.

We can now use a binary decision tree to represent the
query process. On this tree, each internal node has a query
from Q, the binary response to which leads to one of the two
child nodes and eventually to a leaf node labeled with a design.
Each interaction will start with the initial probabilities Π, rep-
resenting our current belief of how likely each design is to be
the most preferred without knowing anything about the current
user. At any internal node “a”, let Θa ⊆ Θ be the rankings
that reach node “a”. Further, we use Θk

a ⊆ Θa for the set of
rankings belonging to group k that reach “a”. We denote by
πΘa

:=
∑
{i:θi∈Θa} πθi the probability mass of the rankings in

Θa, and likewise πΘk
a

:=
∑
{i:θi∈Θk

a}
πθi the probability mass

of rankings in Θk
a. The distribution Π will then be updated as

Πa = {πΘ1
a
, ..., πΘK

a
}, based on query responses from the user

along the path to “a”. By reaching a leaf node l labeled with de-
sign k, we have the conditional probability

π
Θk

l∑K
k′=1

π
Θk′

l

= 1 and

zeros otherwise. The interaction terminates at this point since
the most preferred design is confirmed. Notice that multiple leaf
nodes can be labeled with the same design. For a given decision
tree, let us denote by dk the expected number of queries needed
to reach design k. Then the expected number of queries needed

2 Copyright c© 2013 by ASME

to identify a preferred design for some initial believe Π will be:

L(Π) =

K∑
k=1

πΘkdk. (1)

In the next section, we introduce the GGBS algorithm to min-
imize L in Equation (1) for a given approximation of Π, and
update this approximation based on collected preferred designs
to further lower L.

2 The Algorithm
2.1 Group Generalized Binary Search (GGBS)

From [3, 4], optimizing Equation (1) over all possible deci-
sion trees is NP complete [7]. GGBS greedily minimizes this
objective at each internal node. Minimizing the expected query
size from Equation (1) is shown to be equivalent to minimizing
the following merit at each node of the decision tree:

1−H(ρa) +

K∑
k=1

πΘk
a

πΘa

H(ρka). (2)

Below we first introduce all elements in Equation (2) and
then explain its underlying intuition. First let {x(1)

a , x
(2)
a } be the

design pair raised at node “a”, and l(a), r(a) be the “left” and
“right” child nodes corresponding to x

(1)
a � x

(2)
a and x

(2)
a �

x
(1)
a . Thus Θl(a) and Θr(a) ⊆ Θa are the two sets of rankings

that fall into the two child nodes from “a”. Based on these, the
“reduction factor” ρa in Equation (2) is defined as

ρa = max{πΘl(a)
, πΘr(a)

}/πΘa
, (3)

which is the maximum of the two probabilities that the response
to the next query is 1 and 0. The “group reduction factor” ρka is
defined by:

ρka = max{πΘk
l(a)
, πΘk

r(a)
}/πΘk

a
. (4)

Finally, we denote the Shannon entropy of a proportion π ∈ [0, 1]
by H(π) := −π log2 π − (1 − π) log2(1 − π) and that of a
vector Π by H(Π) := −

∑
i πi log2 πi, where we use the limit,

limπ→0 π log2 π = 0 to define the value of 0 log2 0.
We will explain in detail in the next subsection how ρa, ρka,

πΘa
and πΘk

a
can be calculated depending on (i) the embedding

of designs in the design space, (ii) the cumulative queries and
responses up to node “a”, denoted as {q}a, and (3) the choice of
the current query {x(1)

a , x
(2)
a }.

With Equation (2) explained, we now notice that (i) only the
reduction factors ρa and ρka are affected by the choice of query
and (ii) the entropy H(ρ) is a concave function maximized at
ρ = 0.5. Therefore in order to minimize the expected query size,
we seek a query that pushes not only ρa to 0.5 but also every ρka
to either 0 or 1. This approach is intuitively appealing as such a
query will (i) split the remaining probability masses equally, and
(ii) put rankings from the same group all in one child.

FIGURE 1. Sample case with three designs in R2

2.2 Geometry interpretation of GGBS
From the above discussion, the GGBS algorithm requires an

approximation of Π to start and the values of ρa and ρka to de-
termine which query to make during an interaction. We explain
below using an example how Π is calculated and how one query
is selected. We then provide efficient approximations of Π, ρa
and ρka, in order to alleviate the scalability issue that arises due
to a large number of design variables and a large design set.

2.2.1 Calculation of πΘk
a

We use the simple example
in Figure 1 to explain the idea. Three designs are embedded in
R2. The unit circle centered at the origin represents the feasible
space of the partworth vector w, while the six arcs in different
colors represent segments of w for unique rankings. The car-
dinality of a group, for example |ΘA|, is the length of the two
combined green arcs, or formally

|ΘA| =
∫
||w||=1

I{wT (xA−xB)>0,wT (xA−xC)>0}dw. (5)

At this initial node a = 0, πΘA
0

is the area shaded by light green
in the figure, or

πΘA
0

=

∫
||w||=1

p(w)I{wT (xA−xB)>0,wT (xA−xC)>0}dw, (6)

where p(w) is the density of w. Without any interaction be-
ing conducted, we assume w to be uniformly distributed, i.e.,
p(w) = constant. Thus the three shaded areas should have the
same height. From

∑
k=A,B,C πk = 1, we then have for any

node “a”:

πΘk
a

= |Θk
a|/

K∑
k=1

|Θk
a|. (7)

2.2.2 Calculation of ρa and ρka We now move on to
explain how a query from {xA, xB}, {xA, xC} and {xB , xC}

3 Copyright c© 2013 by ASME

FIGURE 2. Visualization of parameters that contribute to the calcula-
tion of ρa and ρka

can be selected based on the criteria from Equation (2). The key
is the calculation of ρa and ρka for a given query. To this end,
we use Figure 2 to illustrate parameters needed for calculating
ρa and ρka, using query {xA, xC} as an example. Here l(a) is the
child node for A � C and r(a) for C � A. Once the parameters
πΘk

l(a)
and πΘk

r(a)
are calculated for each design k and a candidate

query, the query that yields the minimum value of Equation (2)
will be chosen.

2.3 Scalability and approximation of πΘk and πΘk
a

From Equation (7), we see that calculations of probability
masses depend on calculating arc lengths in the two-dimensional
example or surface areas of a hypersphere in general. Since di-
rect integration over an irregular surface in a high dimensional
space as shown in Equation (5) can be costly, we introduce an ap-
proximation method following the interpretation of version space
for support vector machines (SVM) from [17]. Let us take the
calculation of |ΘA| as an example. In Figure 3, we show the fea-
sible space of w for A to be the most preferred design, which
are the dark and light green arcs combined and bounded by the
two doted lines. On this arc, a point w∗ can be estimated as the
partworth vector for a user who prefers A the most:

maximize
w: ||w||=1

min{wT dAB , wT dAC}

subject to: wT dAB ≥ 0

wT dAC ≥ 0

, (8)

where dAB (dAC) is a normalized vector from B(C) to A. Prob-
lem (8) is a form of SVM [17] and its solution can be efficiently
searched using a linear SVM solver such as [5], provided the util-
ity function is linear. Geometrically, the solution w∗ from Figure
3 corresponds to the largest circle centered on the feasible arc and

FIGURE 3. Approximation of πΘA based on an SVM solution

tangent to the boundaries (dotted lines). The radius of the result-
ing circle, the black solid circle in the figure, is indicated by the
red solid line perpendicular to the tangential boundary. We use
this radius to approximate the feasible space of w. Specifically
for this example and assuming wT dAB > wT dAC , the radius is
calculated as r = wT dAC . We then use r2 to approximate the
proportion of the arc |ΘA| over the circumference of the circle.
In a more general case, we approximate the proportion of the sur-
face area |ΘA| to that of the hypersphere with (wT dAC)D−1. We
demonstrate in Subsection 3.3 that this approximation method
has promising performance.

2.4 Update Π based on observations
The probability masses for designs to be the most preferred

ones can be updated as Πs when s users have completed in-
teraction. With an increase in s, the approximation Πs will
be closer to the true probability masses, which helps to im-
prove the efficiency of the interaction. Therefore, we propose
the following simple scheme for updating Πs: Let c(s)k be the
count of design xk being the most preferred design from a se-
quence of s users, then πΘk is updated by π̃

(s)

Θk = 1 + tc
(s)
k

and π(s)

Θk = π̃
(s)

Θk/
∑K
k=1 π̃

(s)

Θk , where t is an algorithmic param-
eter. A larger t allocates probability masses heavier on those
observed preferred designs. We demonstrate the effect of this
update scheme in Subsection 3.2.

2.5 Summary of the algorithm
Figure 4 summarizes the proposed GGBS algorithm (de-

noted as “appGGBS” hereafter). In order to speed up the cal-
culations in an iteration, the algorithm only examines queries
related to the four designs with the highest probability masses
at the moment. In addition, for each query, the calculation of
ρka is only performed on such design ks with probability mass
πΘk > 10−3/K. In theory, the algorithm should terminate

4 Copyright c© 2013 by ASME

FIGURE 4. appGGBS flowchart

when the probability mass of a design reaches 1, or equivalently,
when the Shannon entropy reaches 0. In practice, it terminates
when the probability masses of any K − 1 designs are less than
10−3/K.

3 Simulated experiments
3.1 Performance comparison: appGGBS versus EGO

Prior to experiments with real users we explore the behav-
ior of the algorithm in simulation. We compare the perfor-
mance of appGGBS against a heuristic algorithm previously pro-
posed in [13]. This existing algorithm, referred to as “EGO”,
is inspired by the Efficient Global Optimization (EGO) method
widely adopted in solving black-box optimization problems [10].
In the same interative pairwise comparison setting, EGO finds a
candidate design with high predicted utility and high variance in
prediction, and uses this design alongside the current preferred
one as the next query. Previous research on EGO has looked into
various schemes for selecting the next sample (design) by weigh-
ing differently the predicted utility and the variance of predic-
tion [14], in the context of non-convex optimization. To exclude
the effect of the algorithmic parameter of EGO from the conclu-
sions in the present work, we simplify EGO to use only predicted
utility as a query criterion, i.e., the new design to be queried will
be the one that has the highest predicted utility among all re-
maining candidates. This is a reasonable heuristic when the util-
ity function to be maximized is linear. In all experiments, the
EGO algorithm is set to have the same termination criterion as
appGGBS. Figure 5 summarizes the flow of EGO.

The performance of appGGBS and EGO is tested under set-

FIGURE 5. EGO flowchart

tings with various numbers of candidate designs embedded in
RD, with D = 10, 15 and 20. We randomize designs through
i.i.d. standard normal distribution and project them to the unit
sphere in order for each design to have non-zero probability to
be the preferred design, i.e., πΘk > 0, ∀k = 1, ...,K. This can
be considered as the worst case scenario for a given number of
designs as none of them is dominated by others and thus cannot
be eliminated from the candidate set. For eachK andD, 100 ran-
dom partworth vectors are drawn uniformly from the unit sphere
to represent users. The uniform draw makes the approximated
Πy a good estimation of the true probability masses. Figure 6
shows the average performance of appGGBS and EGO.

It can be seen that under these test conditions, appGGBS has
overall better performance than EGO, especially when the num-
ber of candidate designs is large. Nevertheless, we also observe
that, with the increase in D, the performance of the two algo-
rithms for a small number of candidate designs becomes hard to
differentiate. In fact, EGO can outperform appGGBS for large
D and small K, as is shown in the case of D = 15. This sug-
gests that EGO is a good heuristic algorithm for minimizing the
expected number of queries for large D and small K.

Let us also check the response time of both algorithms, as it
is essential for human-computer interactions. Figure 7 shows the
average response time for generating a new query using appG-
GBS and EGO. While appGGBS is computationally more ex-
pensive than EGO, its cost is almost linear with respect to the
number of candidate designs. Considering that the query size
for human-computer interaction is often limited to a small num-
ber, the response time of appGGBS is viable for such interac-
tions. We note that with either appGGBS or EGO, the number of
candidate designs that we can query from is rather limited for a
practical query size.

5 Copyright c© 2013 by ASME

(a) D=5

(b) D=10

(c) D=15

FIGURE 6. Performance of appGGBS and EGO under D = 5, 10

and 15

3.2 Performance of the update scheme on Π
We demonstrate now that the efficiency of appGGBS and

EGO can be improved by updating Π according to the observed
preferred designs from users. To do so, we use a simulation with
D = 10 and K = 100. We set up a sequence of 1000 simulated
users whose preferred designs are among a fixed set of 20 de-
signs out of the total of 100 candidate designs. Both appGGBS
and EGO start with the initial approximation Π0. This proba-
bility distribution is updated using the method described in Sub-
section 2.4 with t = 1. Figure 8 shows the resulting number of
queries needed for each user coming into the interaction. When
the set of preferred designs from the user population is small,
e.g., two designs, EGO can perform better than appGGBS since
the algorithm starts by querying the two designs with the highest
probabilities.

3.3 Performance of the approximation method
For completeness, we examine the accuracy of the proposed

approximation method. To illustrate, we run appGGBS on a sim-

(a) D=5

(b) D=10

(c) D=15

FIGURE 7. Response time per query of appGGBS and EGO under
D = 5, 10, 15

FIGURE 8. Updating Π lowers the number of queries needed in a
long run.

ulated experiment with D = 5 and K = 10. During the query
process, we compare the approximated probability masses πΘk ,
for k = 1, ..., 10, with their “actual” values. These “actual”
values are calculated using the following steps: We uniformly
scatter a large amount (104) of points on the unit hypersphere
where w resides; considering each point as a realization of the
random vector w, we label the point by its induced top-ranked

6 Copyright c© 2013 by ASME

(a) Query 1, divergence:0.0056 (b) Query 2, divergence:0.0279

(c) Query 3, divergence:0.0499 (d) Query 4, divergence:0.0599

(e) Query 5, divergence:0.0093 (f) Query 6, divergence:0.0492

FIGURE 9. The actual and approximated πΘk
a

for k = 1, ..., 10

during an appGGBS run in a simulated experiment with D = 5 and
K = 10. The x-axis represents indices for the 10 candidate designs,
and the y-axis for conditional probabilities πΘk

a
/
∑K

k′=1 πΘk′
a

.

design; to calculate πΘk
a
, we count the number of points labeled

by design k within the feasible spherical space under the cumu-
lated responses up to node “a”. Next, the count is divided by
the total sample size (104) to represent the value of πΘk

a
. We use

Jensen-Shannon divergence to measure the difference between
the actual and the approximated distributions of πΘk . Figure 9
compares the two distributions in the first six queries during the
simulated experiment. This result demonstrates the accuracy of
the proposed approximation method.

4 Real-user Experiment
4.1 Experiment setup

The experiment seeks to identify laptop designs that are
most preferred by a group of people.

A list of 48 candidate laptops are created based on five de-
sign features: Screen size, storage size, input type, CPU and bat-
tery. We use two levels of screen size: 11 and 13 inch; three
levels of storage: 64, 128 and 256G; two levels of input: touch-
pad and touchpad plus keyboard; two levels of CPU: average
and high-performance; and two levels of battery: half and full
day duration. The designs are then labeled with realistic prices
according to their feature levels. The prices also ensure that none
of the designs is dominated by others under a linear utility model.
Each design is then encoded using one real value for the price and
six binary digits for design features (one digit for the two-level

features and two for the three-level one). In order to incorporate
a linear preference model in this experiment, interactions (screen
size × input type), (screen size × CPU) and (screen size × bat-
tery) are added along side all the design features. This decision
was made based on pilot tests with users. To summarize, a design
x will contain 9 binary digits and one real value for price. Thus
the experiment will have K = 48 and D = 10. The prices are
normalized by first dividing by the highest price and then sub-
tracting by the mean. This treatment is necessary as otherwise
the design with the highest price will have a dominating approx-
imated probability mass.

We conducted experiments with people in the form of inter-
views. Each experiment contained three stages: The validation
test and two interactive sessions with pairwise comparisons us-
ing appGGBS and EGO correspondingly. The subject was first
shown the full list of candidate designs. We explained the pur-
pose of the experiment and asked the subject to pick one pre-
ferred design from the list. This test serves two purposes: First,
the choice will be used to check if the interactions will converge
successfully to the correct design; and second, it allows subjects
to form their preference before they enter the interactions. Once
the validation test is done, the interactions are conducted. The
outputs from each experiment are the most preferred design and
the number of queries used in the corresponding algorithms. In
all experiments conducted, both algorithms correctly terminate
when the most preferred design reaches probability close to 1
(see Subsection 2.5 for the termination criterion).

4.2 Results and analysis
Figure 10 shows the results of the eleven experiments con-

ducted. On average appGGBS shows better performance than
EGO under the described experiment settings. In addition, appG-
GBS and EGO suggest that both algorithms are promising in lo-
cating preferred designs for subjects among a fairly large amount
of candidates, provided the preference of people on the product
of interest can be captured by a relatively low-dimensional linear
model.

5 Discussion and Conclusion
This study is related to recent developments in adaptive

choice-based conjoint analysis [18, 1], and more generally the
domain of active learning [16, 15]. The difference is that in this
work, we are only interested in finding the most preferred design,
while in conjoint analysis, the goal is to estimate the distribu-
tion of partworth w, or equivalently, the distribution of full rank-
ings ΠΘ. It can be shown that by considering each ranking as a
“group”, the proposed GGBS algorithm can be transformed into
the classic Generalized Binary Search algorithm which is equiva-
lent to the uncertainty sampling strategy (also called “utility bal-
ance” in [1]) commonly used in active learning practices [15].

We examined the problem of identifying users’ most pre-

7 Copyright c© 2013 by ASME

FIGURE 10. Experiment results

ferred designs from a candidate design set through pairwise com-
parisons. Unlike earlier heuristic approaches to this problem, the
appGGBS algorithm proposed in this work directly minimizes
the expected number of queries and has a tractable computa-
tion cost. Besides its theoretical foundation, the algorithm also
showed better performance both in simulated and real-user ex-
periments than the algorithm in [13].

It should be noted, however, that the appGGBS algorithm
relies on the assumption that the underlying utility function is
linear with respect to known design features. While we showed
in the real-user experiment that a remedy to this is to manually
add interactions to the linear model, the algorithm may conclude
incorrectly the subjects’ preferred design when its built-in model
fails to capture the nonlinearity in the preference. This limitation
can be relaxed by incorporating a nonlinear kernel in Problem
(8). Future investigation in this direction is needed.

The interaction we investigated in this paper utilizes only
individual preferences. In future work we can leverage this in-
teraction with a collaborative filter, allowing the algorithm to re-
fine the probability updates by taking into account preferences of
other subjects with similar responses as the current one.

6 Acknowledgement
This research was partially supported by the Automotive Re-

search Center, a US Army Center of Excellence in modeling and
simulation of Ground Vehicle Systems headquartered at the Uni-
versity of Michigan. This support is gratefully acknowledged.

REFERENCES
[1] J. Abernethy, T. Evgeniou, O. Toubia, and J. Vert. Eliciting

consumer preferences using robust adaptive choice ques-
tionnaires. IEEE Transactions on Knowledge and Data En-
gineering, 20(2):145–155, 2008.

[2] G. Adomavicius and A. Tuzhilin. Toward the next genera-

tion of recommender systems: A survey of the state-of-the-
art and possible extensions. IEEE Transactions on Knowl-
edge and Data Engineering, 17(6):734–749, 2005.

[3] G. Bellala, S. Bhavnani, and C. Scott. Extensions of gener-
alized binary search to group identification and exponential
costs. Advances in Neural Information Processing Systems
(NIPS), 23, 2010.

[4] G. Bellala, S. Bhavnani, and C. Scott. Group-based ac-
tive query selection for rapid diagnosis in time-critical
situations. Information Theory, IEEE Transactions on,
58(1):459–478, 2012.

[5] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. Liblin-
ear: A library for large linear classification. The Journal of
Machine Learning Research, 9:1871–1874, 2008.

[6] R. Herbrich, T. Graepel, and K. Obermayer. Support vec-
tor learning for ordinal regression. In Proceedings of the
Ninth International Conference on Artificial Neural Net-
works, volume 1, pages 97–102, 1999.

[7] L. Hyafil and R. Rivest. Constructing optimal binary deci-
sion trees is np-complete. Information Processing Letters,
5(1):15–17, 1976.

[8] K. Jamieson and R. Nowak. Active ranking using pairwise
comparisons. arXiv preprint arXiv:1109.3701, 2011.

[9] T. Joachims. Optimizing search engines using clickthrough
data. In Proceedings of the 8th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, pages 133–142, 2002.

[10] D. Jones, M. Schonlau, and W. Welch. Efficient global
optimization of expensive black-box functions. Journal of
Global Optimization, 13(4):455–492, 1998.

[11] J. Kelly and P. Papalambros. Use of shape preference infor-
mation in product design. In International Conference on
Engineering Design, Paris, France, 2007.

[12] H. Kim and S. Cho. Application of interactive genetic al-
gorithm to fashion design. Engineering Applications of Ar-
tificial Intelligence, 13(6):635–644, 2000.

[13] Y. Ren and P. Papalambros. A design preference elicitation
query as an optimization process. Journal of Mechanical
Design, 133:111004, 2011.

[14] M. Sasena. Flexibility and Efficiency Enhancements for
Constrained Global Design Optimization with Kriging Ap-
proximations. PhD thesis, University of Michigan, Ann Ar-
bor, Michigan, 2002.

[15] B. Settles. Active learning literature survey. University of
Wisconsin, Madison, 2010.

[16] S. Tong and E. Chang. Support vector machine active learn-
ing for image retrieval. In Proceedings of the 9th ACM
International Conference on Multimedia, pages 107–118,
2001.

[17] S. Tong and D. Koller. Support vector machine active learn-
ing with applications to text classification. The Journal of
Machine Learning Research, 2:45–66, 2002.

8 Copyright c© 2013 by ASME

[18] O. Toubia, J. Hauser, and D. Simester. Polyhedral meth-
ods for adaptive choice-based conjoint analysis. Journal of
Marketing Research, 41(1):116–131, 2004.

APPENDIX: Candidate Designs For Section 4

FIGURE 11. All candidate designs for the real-user experiment

9 Copyright c© 2013 by ASME

