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ABSTRACT
Conjoint analysis from marketing has been successfully in-

tegrated with engineering analysis in design for market systems.
The long questionnaires needed for conjoint analysis in relatively
complex design decisions can become cumbersome to the human
respondents. This paper presents an adaptive questionnaire gen-
eration strategy that uses active learning and allows incorporation
of engineering knowledge in order to identify efficiently designs
with high probability to be optimal. The strategy is based on
viewing optimal design as a group identification problem. A run-
ning example demonstrates that a good estimation of consumer
preference is not always necessary for finding the optimal design
and that conjoint analysis could be configured more effectively
for the specific purpose of design optimization. Extending the
proposed method beyond a homogeneous preference model and
noiseless user responses is also discussed.

1 Introduction
Conjoint analysis [1, 2] has been widely studied and prac-

ticed in the marketing and design communities where statistical
models of consumer preferences are employed. Research to im-
prove theoretical and practical issues with conjoint analysis is
actively pursued. For example, research on heterogeneous con-
sumer preference models based on questionnaire responses has
addressed modeling formulations (e.g., nested logit [3], mixed
logit [4], mixture model [5], consideration sets [6]), efficiency in
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constructing the models (e.g., through convex optimization [7]
and variational methods [8]), and design of the questionnaires
such as adaptive questionnaires [9–11].

Such developments in conjoint analysis are mainly moti-
vated by marketing questions such as how to achieve a good esti-
mation of human preferences within limited resources. In design
for market systems, the goal is not the preference model itself
that is typically incorporated in a demand model within a profit
maximization objective. Rather, the goal is the identification of
the optimal design to bring to the market, accounting for business
and engineering considerations at the same time. Therefore, high
accuracy of the preference model per se may not be important or
may be important only at relevant points in the design space, for
example, points visited by the optimization algorithm and even-
tually the optimal design. This approach is similar to the use of
local and global models in surrogate-based optimization [12] and
in design under uncertainty [13]. This idea of incorporating en-
gineering and marketing models in conjoint analysis was noted
in Feit [14], where the author proposed a design of experiments
in place of D-optimal design for maximizing the expected profit.
That approach was found to be computationally intractable and
no simulation or experimental results were reported.

In this paper, we propose an adaptive questionnaire directly
for design optimization, motivated by existing theoretical work
on active learning. Specifically, we develop a view of con-
joint analysis as a group identification problem. We use a well-
documented dial-readout scale design from Michalek et al. [15]
as a running example to demonstrate that (i) a good estimation
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TABLE 1. Product Attributes and Price Levels from [15]

k Description Metric Units Levels

z1 Weight Capacity Weight Causing a 360◦ Dial Turn lbs 200 250 300 350 400

z2 Aspect Ratio Platform Length Divided by Width - 6/8 7/8 8/8 8/7 8/6

z3 Platform Area Platform Length Times Width in.2 100 110 120 130 140

z4 Tick Mark Gap Distance between 1-lb Tick Marks in. 2/32 3/32 4/32 5/32 6/32

z5 Number Size Length of Readout Number in. 0.75 1.00 1.25 1.50 1.75

p Price US Dollars $ 10 15 20 25 30

of consumer preference is not necessary for finding the optimal
design, and (ii) we can improve the effectiveness of question-
naires used for the purpose of design optimization. To simplify
the discussion, we assume a homogeneous noiseless consumer
preference model and a deterministic engineering model. In the
remainder of the paper, Section 2 describes the running exam-
ple, Sections 3 and 4 present the theory and algorithm for the
proposed adaptive questionnaire, which is applied to the running
example in Section 5, and Sections 6 and 7 offer discussion and
conclusions, respectively.

2 Running Example: Dial-Readout Scale Design
We first introduce the well-documented scale design prob-

lem from [15] to show that finding the optimal design does not
necessarily require an accurate consumer preference model, and
then provide a more theoretical explanation for this argument.

The scale design problem consists of a profit model and an
engineering model, as we elaborate below.

2.1 Profit model
The scale has six attributes that affect consumer purchase

decisions: weight capacity (z1), aspect ratio (z2), platform
area (z3), tick mark gap (z4), number size (z5) and price
(z6). Discrete levels of these attributes are listed in Table
1. We denote a design by its binary attribute vector z :=
(z1,1, . . . , z1,5, . . . , z6,1, . . . , z6,5), where zi,j = 1 if the ith at-
tribute is at level j, or otherwise zi,j = 0. A homogeneous
population-level preference model was derived through a con-
joint study in [15] and the resulting partworth vector w0 is pre-
sented in Table 2. While the true preference model is never
known, these partworth values will be considered as the “true”
partworths throughout the running example for demonstration
purposes.

Let p be the price level induced by the binaries
(z6,1, . . . , z6,6) associated with the price, and cV = $3 be the
constant manufacturing cost of the scale. The profit is propor-
tional to the following function of design attributes:

profit ∝ f(z,w) =
p− cV

1 + exp(−wT z)
, (1)

TABLE 2. Partworth values (w0), from [15]

z1 z2 z3

200 lbs. -0.534 100 in.2 0.015 0.75 in. -0.744

250 lbs. 0.129 110 in.2 -0.098 1.00 in. -0.198

300 lbs. 0.228 120 in.2 0.049 1.25 in. 0.235

350 lbs. 0.104 130 in.2 0.047 1.50 in. 0.291

400 lbs. 0.052 140 in.2 -0.033 1.75 in. 0.396

z4 z5 p

0.75 -0.058 2/32 in. -0.366 $10 0.719

0.88 0.253 3/32 in. -0.164 $15 0.482

1.00 0.278 4/32 in. 0.215 $20 0.054

1.14 -0.025 5/32 in. 0.194 $25 -0.368

1.33 -0.467 6/32 in. 0.100 $30 -0.908

assuming no competing products exist in the market. In the case
where competitors exist, the profit will be proportional to

profit ∝ (p− cV )wT z

1 + wT z +
∑C
c=1 exp(wT z(c))

, (2)

where z(c) for c = 1, . . . , C are the designs of theC competitors.
Since addition of competitors will not affect the algorithmic de-
velopment, the running example will use Equation (1) for profit
calculation.

2.2 Engineering model and feasibility
The engineering analysis detailed in [15] derived mappings

of some 14 design variables and 13 design parameters to the five
attributes, alongside eight mathematical or geometric constraints
to determine design feasibility. The engineering model is used
here to identify a set of 2455 feasible design attribute combina-
tions. Specifically, let z(x) be the mapping from design variables
to attributes and g(x) ≤ 0 be the constraints. For each combina-
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tion of design attributes z, we solve the problem

min
x

||z− z(x)||2

subject to g(x) ≤ 0.
(3)

The combination z will be considered feasible if a feasible so-
lution x is found and the resultant minimal discrepancy ||z −
z(x)||2 is less than 10−3. Note that unlike [15] where optimal
design variables x are found for maximizing profit, the goal in
this study is to identify the optimal combination of design at-
tributes from the feasible set. We will discuss in Subsection 5.4
the extension from optimizing the attribute combination to opti-
mizing design variables.

2.3 Parametric study
Based on the profit and engineering models, and the revealed

partworth of the population, one can identify the optimal design,
i.e., the most profitable combination of design attributes.

We now investigate how the optimal design changes when
the estimated partworths are different from the true ones. We
vary each element in the true partworth vector w0, one at a time,
from −2 to 2 at an interval of 0.01, while keeping other part-
worths unchanged. Following Equation (1), each test leads to a
most profitable design. The result is presented in Figure 1, where
the rows correspond to the thirty attribute levels, from z1,1 at the
top to z6,5 at the bottom. The true partworth values of w0 are
marked in red. Take the first row as an example: It is composed
of a sequence of hypothetical partworth vectors where the part-
worth value for z1,1 goes from −2 to 2. The dark section to the
right of the row represents partworth vectors that yield different
optimal designs than the true one, while the white section repre-
sents those that retain the true optimal design. We also observed
that beyond the region [−2, 2] there will be no further flip of col-
ors.

This result shows that the optimal solution is insensitive to
the partworth estimates for some of the attribute levels. For ex-
ample, the partworths for low price levels, namely, z6,1 and z6,2,
do not affect the optimal solution on their own. This is because
the potentially larger market share induced by these price levels
will not compensate for the lower unit profit, according to the
profit model.

The findings from this parametric study indicate that for
identifying the optimal design, e.g., with maximum profit, it is
not necessary to acquire all the information needed for correctly
modeling the preference. In other words, the questionnaire could
be tailored for design optimization purposes, by considering the
profit and engineering models.

We can further use the illustration in Figure 2 to support the
findings: Consider the entire space where the true partworth vec-
tor lies in as the square, and each binary question, e.g., “Among
design A and design B, which one do you prefer more?”, as a
cutting hyperplane in that space. The feasible space for the true

FIGURE 1. Moving one of the partworth values away from the truth
may not change the optimal design.

partworth to reside will be reduced by each new question and
response from the user. In a traditional marketing study where
questionnaires are designed for estimating the true partworth,
cuts would be adaptively designed to reduce the remaining space
as much as possible. In the case of optimal design, consider the
entire space to be segmented by a set of designs, each of which
is the optimal in the corresponding segment of the space accord-
ing to the profit model. The strategy for finding the true optimal
design is to cut the space efficiently so that ideally its remainder
will consist only of the segment belonging to the true optimal
design in a few iterations. Intuitively, this cutting strategy is not
necessarily the same as reducing the space as much as possible
and may involve less cuts. We will show this theoretically in
the algorithm development in Section 3. This explains the moti-
vation for developing a different adaptive questionnaire strategy
for design optimization.

3 Adaptive Questionnaire
Motivated by the parametric study from the running exam-

ple, we propose an adaptive questionnaire design specific for de-
sign optimization. The theoretical support of the questionnaire
comes from the Group Generalized Binary Search (GGBS) al-
gorithm used for minimizing the number of questions to solve a
group identification problem [16]. This algorithm was previously
extended to preference elicitation [17] where the design with the
highest expected preference was identified. Under the same the-
ory and similar implementation, we now apply the GGBS algo-
rithm to identify the design with the highest expected profit.

The rest of this section introduces the group identification
problem and shows that identifying an optimal design through
binary questions can be casted as such a problem.
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FIGURE 2. A comparison between adaptive questionnaire for prefer-
ence modeling and for design optimization.The true preference model
(the circle) is a point in a preference space (the square). Binary ques-
tions are cuts (the lines). With the profit model, the space is segmented,
where segments are labeled by the corresponding optimal designs.

FIGURE 3. An example of the group identification problem. Among
the three candidate questions, “Q1” is the best to ask.

3.1 Group identification
Group identification can be explained by the following game

with two players: Assume Players A and B are both familiar with
and only with a list of objects, say, the one in Figure 3. Player A
first picks an object from the list without letting Player B know.
Player B then picks yes/no questions to ask (see figure). Based
on Player A’s responses, B guesses which group the object be-
longs to. To Player B, the ordering of questions will affect how
quickly the correct group can be identified. For the example in
Figure 3, the best question to ask is “Q1”, since its answer di-
rectly determines which group the object is from. To help Player
B to find the best strategy for asking questions in such identifica-
tion problems, Bellala et al. proposed the GGBS algorithm that
adaptively chooses questions and minimizes the expected num-
ber of questions needed [16]1.

3.2 Questionnaire as group identification
We now show that identifying the optimal design can be con-

sidered as a group identification problem. Consider a simple case
with three designs A, B and C. Let an “object” be a ranking of

1Golovin et al. [18] also studied the group identification problem. We defer a
comparison of their approach with this study to future work.

the designs according to their profits calculated from Equation
(1). For example, let design A be the most profitable and C the
least, i.e., A � B � C. A “group” is a set of rankings with
the same most profitable design, e.g., the group “design A is the
best” contains two objects: A � B � C and A � C � B. The
questionnaire consists of a set of binary questions, i.e., pairwise
comparisons. The cumulative binary responses from a question-
naire provide constraints on the feasible space of the partworth
vector and induce probabilities of each design being the most
profitable one, a process similar to identifying a group. Based
on these analogies, we see that finding the most profitable design
is equivalent to identifying a group, given that the set of candi-
date designs is finite. Therefore GGBS can be used to design the
questionnaire adaptively.

On the side, the same analogy can be applied to preference
modeling: Consider that the true model induces a ranking of all
designs. To retrieve this unknown ranking, we may treat all pos-
sible rankings as “objects”. Therefore a conjoint analysis can be
considered as the problem of object identifying, where the Gen-
eralized Binary Search algorithm can apply.

4 The GGBS Algorithm
We now elaborate on the technical details of the GGBS al-

gorithm for identifying the optimal design. The majority of the
development has been reported in previous work on finding the
most preferred design [17] and is restated here for completeness.

4.1 Preliminaries
Some notations and definitions are introduced first.
Let the set of K feasible designs be {z(1), . . . , z(K)}. A

profit ranking θ can be derived for a given partworth vector w
using Equation (1), for example, θ = z(1) � z(2) � ... � z(K).
Let the total number of rankings be M and the ranking set be
Θ = {θ1, θ2, ..., θM}. Each ranking is then labeled according
to its top-ranked product, e.g., if θm = z(1) � ..., then a label
ym = 1 is assigned. We denote by Θk = {θm ∈ Θ : ym = k}
the rankings for which product k is the most preferred.

For each ranking θm, we use πθm = Pr(θ = θm) to represent
its probability to be the correct one, and the set

Πθ := (πθ1 , ..., πθM ) (4)

for the set of probabilities of all M rankings (objects), with∑M
m=1 πθm = 1. Similarly, we use πΘk

=
∑
θ∈Θk

πθ for the
probability of product k being the most profitable, and the set

Π := (πΘ1
, ..., πΘK

) (5)

for the set of probabilities of allK products (groups). Note that Π
can be determined jointly by the design set {z(1), . . . , z(K)} and
the prior distribution of w, p(w), and GGBS requires Π (there-
fore p(w)) as an input. In this study, without any prior knowl-
edge of user preferences, we assume p(w) to be standard multi-
variate normal. Relaxation on this assumption will be discussed
in Subsection 6.1.
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(a)

(b)

FIGURE 4. (a) An individual interaction as a path; (b) a binary deci-
sion tree composed of all possible paths

4.2 Questionnaire as a binary decision tree
Each questionnaire can be regarded as a user-computer in-

teraction, consisting of a sequence of questions or “queries”. In
this study, a query is a pairwise comparison task generated by
the computer and completed by the respondent. The entire inter-
action can be considered as a “path” where a set of “nodes” are
connected by “edges”, see Figure 4(a). We call the last node of
the path the “leaf” node, which is labeled by the most profitable
product. The rest of the nodes are called “internal” ones. Each
internal node “a” contains (1) a set of rankings Θa ⊆ Θ that
reaches the node based on previous query responses, and (2) a
new query made at this node, the response to which will lead to
the next node.

Since each query could result in two responses depending
on w, the collection of possible paths forms a binary decision
tree, each internal node of which has a query and each leaf node
an optimal design corresponding to some realizations of w, see
Figure 4(b). We call an arrangement of queries along this binary
decision tree a “query strategy.”

Note from the figure that the binary decision tree can have
multiple paths with leaf nodes labeled by the same design. This is
because different partworth vectors could yield the same optimal
design, as we demonstrated in Subsection 2.3.

4.3 The algorithm
Given a query strategy and the distribution p(w), we can

calculate the expected number of queries of the decision tree, de-
noted as L; varying the choice of query strategy could change
that expectation. While optimizing L over all possible arrange-
ments of queries is shown to be NP complete [19], Bellala et
at. [16] proved that for any query strategy, L can be decomposed
into a set of additive terms La with respect to each internal node

“a”:

L =
∑

a∈all internal
nodes

La + constant. (6)

Thus L can be heuristically minimized by greedily minimizing
La at each node with respect to the choice of query. This local
objective La has the following form and requires some explana-
tion:

La = 1−H(ρa) +

K∑
k=1

πΘa
k

πΘa

H(ρak). (7)

For a given query (pairwise comparison) with binary response,
the current node “a” will lead to the “left” and “right” child nodes
denoted as “l(a)” and “r(a)”, respectively. The sets Θl(a) and
Θr(a) ⊆ Θa contain rankings that fall into these two child nodes.
The symbol ρa in Equation (7) is called the “reduction factor”
and is defined as

ρa = max{πΘl(a) , πΘr(a)}/πΘa , (8)

where πΘa :=
∑
{i:θi∈Θa} πθi is the total probability mass of

rankings at node “a”, which then splits into πΘl(a) and πΘr(a) for
the “left” and “right” child nodes. Similarly, the “group reduc-
tion factor” ρak is defined as

ρak = max{π
Θ

l(a)
k

, π
Θ

r(a)
k

}/πΘa
k
, (9)

where πΘa
k

:=
∑
{i:θi∈Θa

k}
πθi is the total probability mass of a

group labeled by product k at node “a”, which is then separated
into π

Θ
l(a)
k

and π
Θ

r(a)
k

for the given query.
Note that both the reduction factor and the group reduction

factor are functions of the choice of query. The term πΘa
k
/πΘa

represents the conditional probability of product k being the most
profitable at node “a”. Finally, we denote by H(ρ) := −ρ log2 ρ
the Shannon entropy of some scalar ρ, and define 0 log2 0 = 0.

To demonstrate how GGBS works, let us revisit the group
identification problem from Figure 3. Once Player A picked
one object from the four, Player B needs to pick a query. To
start, it is reasonable for Player B to believe that the four candi-
date objects have equal chances to be the correct one, i.e., Πθ =
(πMotorcycle, πBus, πHelicopter, πPlane) = (0.25, 0.25, 0.25, 0.25) and
therefore Π = (πΘGround vehicle , πΘAircraft) = (0.5, 0.5) for the two
groups. Player B will now calculate Equation (7) for each query
and pick the one with minimal La. The calculation is performed
in Table 3, where the left (right) child node corresponds to the
answer “yes” (“no”). From the table, “Q1” leads to the mini-
mum La, therefore should be queried. The presented calculation
can be applied at each node to determine the best query.

5 Adaptive Questionnaire for the Scale Design Prob-
lem
Let us now review the scale design problem presented in

Section 2. The dial-readout scale has six design attributes, each
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TABLE 3. Query selection for the case in Figure 3

Query πΘl(a) (πΘr(a) ) ρa π
Θ

l(a)
Ground vehicle

(π
Θ

r(a)
Ground vehicle

) π
Θ

l(a)
Aircraft

(π
Θ

r(a)
Aircraft

) ρaGround vehicle ρaAircraft La

Q1 0.5 (0.5) 0.5 1 (0) 0 (1) 1 1 0.5

Q2 0.5 (0.5) 0.5 0.5 (0.5) 0.5 (0.5) 0.5 0.5 1

Q3 0.25 (0.75) 0.75 0 (1) 0.5 (0.5) 1 0.5 1.16

with five levels. We assume that the homogeneous user prefer-
ence can be modeled by a linear utility function and the profit
model by Equation (1). Based on engineering constraints, the
set of all K = 2455 feasible combinations of attribute levels are
chosen as the candidate design set. The questionnaire contains a
sequence of pairwise comparison questions, each consisting of a
pair of designs selected from the candidate set. For each given
question, the simulated user will deterministically choose the de-
sign with higher utility, according to the true partworth vector
w0.

5.1 Optimal design under full information
We first investigate the extreme case where answers of all

K(K − 1)/2 = 3012285 questions are known. These answers
provide a set of half-spaces in R30, the intersection of which
defines a narrow feasible partworth space2. As previously de-
scribed, this running example assumes that w follows a standard
multivariate normal distribution. Under full information, the dis-
tribution of w is constrained in the narrow feasible space, and
a numerical integration within this space can be performed to
calculate the conditional probabilities of each design being the
optimal3. The result in Table 4 shows that with full information,
there are two designs, with the only difference being the price
level, that have non-zero probabilities to be the optimum. In ad-
dition, the first design from the table is the true optimum under
the given models and the true partworth values.

TABLE 4. Optimal design under full information

# z1 z2 z3 z4 z5 p Prob.

1 300lbs. 120in.2 1.25in. 1.14 5/32 $25 0.37

2 300lbs. 120in.2 1.25in. 1.14 5/32 $30 0.63

2In traditional conjoint analysis, it is required that identification constraints
are imposed on the feasible space of w. This is because infinite solutions exist
that maximize the likelihood under the logit model. However, under hierarchical
Bayesian models (or with regularization on w), such constraints are not necessary
as a constant shift in the partworths will cause the posterior likelihood of w
to change. Therefore we do not impose identification constraints on w in this
running example.

3Under full information, the feasible space is almost a line. Therefore we
used a one-dimensional truncated normal distribution for numerical integration.

5.2 GGBS implementation
Here we describe the GGBS implementation for selecting

the best query, using the procedure elaborated in Subsection
4.3. In each round, with the accumulated responses from pre-
vious questions, we first calculate the conditional probabilities
of each design to be the optimal. In order to allow tractable
computation in choosing the best query, we pick the 10 designs
with the highest conditional probabilities, leading to a set of
10(10 − 1)/2 = 45 candidate queries to choose from in each
iteration.

The best query is chosen according to Equation (7). To do
so, the distributions Π and πΘa

k
shall be calculated. Under the

assumption that w is standard multivariate normal, each proba-
bility mass πΘk

from the distribution Π can be calculated as

πΘk
=

∫
w∈R30

1{f(z(k),w) > f(z(k′),w),∀k′ 6= k}

p(w)dw.

(10)

Here z(k) is the kth design from the candidate set, f(z(k),w)
is the profit of the kth design given w, 1{conditions} is an in-
dicator function that equals 1 when conditions are satisfied or 0
otherwise. Similarly, the calculation of πΘa

k
for k = 1, . . . ,K

takes the form:

πΘa
k

=

∫
w∈R30

1{f(z(k),w) > f(z(k′),w),∀k′ 6= k}p(w|a)dw,

where p(w|a) is a truncated normal distribution where ws are
constrained by all query responses prior to node “a”. The nu-
merical integration is performed using a Gibbs sampler follow-
ing Rodriguez-Yam et al. [20], with a sample size of 104 and the
first half discarded as burn-in samples.

5.3 Alternative questionnaires
Two alternative query strategies are used for comparison:

The “Adaptive for Preference” (“AP”) approach has queries
adaptively chosen for the purpose of estimating the partworth
vector; the “Best Profit” (“BP”) approach has each query con-
sisting of the designs with the highest probabilities to be the most
profitable. “AP” is used to show the advantage of a questionnaire
designed for optimization purpose from one designed for part-
worth recovery; “BP” is used to show the performance improve-
ment by GGBS from a naı̈ve questionnaire approach for design
optimization.
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FIGURE 5. Averaged Jensen-Shannon divergence from the target
during the questionnaire. Best viewed in color.

The “AP” approach implemented here can be considered as a
special case of adaptive preference elicitation where each object
(ranking of designs) is a group by itself. The best query at each
node “a” can be found by minimizing La = 1 − H(ρa) where
the reduction factor ρa follows Equation (8), and both Π and πΘa

k

are calculated based on the linear preference utility model rather
than the profit model. This approach is essentially an uncertainty
sampling scheme as the query that maximizes the Shannon en-
tropy H(ρa) should contain a pair of designs with the smallest
difference in their utilities. The method is also similar in concept
to Tong et al. [21], Toubia et al. [10] and Jamieson et al. [22].
Similar to the GGBS implementation, “AP” also uses a reduced
set of 45 candidate queries in each iteration.

5.4 Simulation results
For all three algorithms, we run the simulated questionnaire

for 30 queries (iterations). We use the Jensen-Shannon diver-
gence [23] to track the difference between the conditional prob-
ability distribution to the target one in Table 4. The decrease
in divergence indicates the convergence from the guess (Π) to
the truth. Jensen-Shannon divergence is chosen because the two
distributions are sparse, considering that only a small set of de-
signs will retain non-zero probabilities to be optimal conditioned
on all the query responses. For each algorithm, twenty inde-
pendent experiments are conducted and the averaged divergence
plots are summarized in Figure 5, along with standard errors.
The result shows that the GGBS algorithm performs significantly
better than the naive BP approach in convergence and also con-
sistently but marginally better than AP on average. Note that the
randomness in these simulation results is solely due to the Gibbs
sampler.

Note that the proposed GGBS algorithm is not supposed to
be the best choice when the goal of the questionnaire is to effi-
ciently model the preference. For verification, we derive the esti-

FIGURE 6. Averaged correlation between the true partworths and the
estimators during the questionnaire. Best viewed in color.

mator of w0 at each iteration using an L2-regularized logistic re-
gression and the LIBLINEAR solver [24]4, and track the change
in the correlation between the true partworth vector and the esti-
mator during the questionnaire. The comparison on this correla-
tion from the same simulations is shown in Figure 6, where the
performance of AP is superior than the other two, both support-
ing our argument and indicating the correct implementation of
AP.

The above conclusion is warranted only under the current
settings in this simulated study. Future scrutiny is required to
further generalize the conclusion. For example, more queries be-
yond the current query limit must be simulated to observe the
performance trends of the three algorithms in longer question-
naires. Parametric studies should also be performed to under-
stand the influence of algorithmic parameters such as the sam-
pling size of the Gibbs sampler and the number of candidate
queries at each iteration. Other alternative adaptive conjoint anal-
ysis algorithms, such as Abernethy et al. [25]5, should be in-
cluded for benchmarking in addition to AP.

6 Discussion
Here we provide discussion beyond the results presented for

the running example to show how the proposed method could be
extended to address some of its current drawbacks.

6.1 Relaxing the assumptions on p(w)
One significant drawback of the GGBS algorithm is its re-

liance on the distribution of w (and hence the probability masses
Π) as a known input. Therefore, a good approximation of p(w)

4In the LIBLINEAR solver context, the penalty on training error is set to
C = 106 since we assumed no random noise in user utility.

5When multiple most uncertain queries exist, Abernethy et al. proposes to
choose the one that minimizes an approximation of the variance of the estimates.
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of the target user population will lead to an efficient query strat-
egy and vice versa. Since p(w) is commonly unknown, it is
necessary for the algorithm to refine its approximation of p(w)
through a sequence of questionnaires. Indeed, based on accumu-
lated user responses, a flexible model can be efficiently learned,
e.g., using convex optimization methods from Chapelle et al. [26]
or Evgeniou et al. [7], to replace the initial guess of a standard
normal assumption on p(w) used in the running example.

In addition, while GGBS requires p(w) to be known, it does
not rely on homogeneous user preferences. Therefore the refined
model of p(w) can be directly applied in GGBS while addressing
the heterogeneity of preferences. Nonetheless, it should be noted
that the algorithm requires p(w) to be fixed during the question-
naire.

6.2 Noisy human choice
The presented algorithm assumes that human utilities have

zero noise, which is inconsistent with the profit model in Equa-
tion (1) which inherently incorporates choice noise. While
GGBS performed well in the zero-noise setting, it does not nec-
essarily outperform the alternative methods when noise exists.
In the preference learning context, Jamieson et al. proposed to
query the same question multiple times and pick the response
based on majority vote [22]. However, the algorithm requires the
probability of a false choice from the user to be strictly lower
than 0.5. Whether such an algorithm can be applied to robust
questionnaire design for design optimization requires further in-
vestigation.

6.3 High computational cost
Due to the use of Markov Chain Monte Carlo simulations

for numerical integration, the GGBS algorithm has high compu-
tation cost, making it impractical for real-time human compu-
tation interactions6. Several treatments should be looked into:
The calculation of conditional probabilities could be shortened
by a more efficient Gibbs sampler, such as in Pakman et al. [27],
while the samplers can be called in parallel; when both the total
numbers of queries and the designs are limited, it is also possible
to offload the computational burden during the questionnaire by
generating query sequences offline so that the next query can be
looked up.

6.4 From optimal attribute combination to optimal de-
sign variables

Recall that the scale problem has six design attributes gov-
erned by 14 design variables. While the present study aimed at
identifying the optimal feasible combination of design attributes,
it would be more valuable if the optimal values for the design

6On a PC with i5 CPU and 8G memory, it takes 10 minutes for comparing
among all 45 candidate queries by calling the Gibbs sampler iteratively. Note
that this time changes for a different parameter setting of the Gibbs sampler.

variables could be found from a continuous design space, by con-
ducting a sequence of questionnaires. However, this requires a
conditional probability density function on the design space to
be constructed at each iteration. Therefore this goal could only
be achieved when the computational cost of sampling method is
significantly lowered.

6.5 Questions outside of the candidate set
In the running example, we showed that even with all query

responses, the true optimal design cannot be identified with prob-
ability 1. In fact, it is not even ranked with the highest probabil-
ity. Considering that the example only uses queries formed from
feasible designs, it would be interesting to see if some infeasible
queries, i.e., a design pair containing infeasible designs, could
lead to higher La values. Therefore further study is needed to in-
vestigate whether new queries can be created, rather than picked
based on feasible designs, to improve the effectiveness of the
questionnaire.

7 Conclusions
We offered an analogy between identifying an optimal de-

sign from engineering and profit models and the general problem
of identifying the group label of objects, and showed that ques-
tionnaires can be directly and adaptively designed for design op-
timization. We demonstrated using an existing dial-readout scale
design problem that the proposed GGBS algorithm is superior to
an adaptive conjoint analysis method aimed for preference mod-
eling in converging to the correct conditional probabilities of de-
signs being the optimal. The conclusion from the study requires
future investigation in order to be generalized.
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