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We seek to elicit individual design preferences through
human-computer interaction. During an iteration of the in-
teractive session, the computer queries the subject by pre-
senting a set of designs from which the subject must make
a choice. The computer uses this choice feedback and cre-
ates the next set of designs using knowledge accumulated
from previous choices. Under the hypothesis that human re-
sponses are deterministic, we discuss how query schemes in
the elicitation task can be viewed mathematically as learning
or optimization algorithms. Two query schemes are defined.
Query Type 1 considers the subject’s binary choices as defi-
nite preferences, i.e., only preferred designs are chosen while
others are skipped; Query Type 2 treats choices as compar-
isons among a set, i.e., preferred designs are chosen relative
to those in the current set but may be dropped in future iter-
ations. We show that Query Type I can be considered as an
active learning problem while Type 2 as a “black-box” opti-
mization problem. This paper concentrates on Query Type
2. Two algorithms based on support vector machine and
efficient global optimization search are presented and dis-
cussed. Early user tests for vehicle exterior styling prefer-
ence elicitation are also presented.

Nomenclature

1 column vector where all elements are 1’s
b bias for a linear decision function

C soft-margin SVM weight

D design space with p dimensions

D, most preferred region in D

K [ x [ kernel matrix

*Corresponding author.

! number of designs in each design set during an interaction

p dimensionality of the design space

R correlation matrix in the kriging model

t maximum number of iterations during an interaction

s> mean square error in a kriging model

u(x) utility function defined on D

w coefficients for a linear decision function

wi,wy  weights in the weighted sum merit function

a design in D

response for x

prediction of y(x) for a certain model

solutions to the soft-margin SVM

maximum likelihood estimation in the simple kriging
model

Akriging - Gayssian spread used in R

ASYM - Gaussian spread used in K

& classification error for sample i
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1 Introduction

The present work is motivated by the observation that
while consumer preference plays an essential role in product
design, its effective integration within design optimization
remains challenging. Research in linking preference mod-
els to engineering optimization models for consumer prod-
uct design (e.g., Wassenaar et al. [1], Kumar et al. [2], Li and
Azarm [3], Michalek et al. [4]) has demonstrated how these
different disciplines can be integrated. Most of these demon-
strations utilize preference models with only a small num-
ber of variables since the variance in coefficient estimation
of these models can be large and unfavorable when the di-
mensionality of the design space becomes high. Yet, to cap-



ture the right design variables in an essentially qualitative or
holistic design problem such as vehicle styling we must have
sufficient design freedom and thus a high-dimensional design
space. This “curse of dimensionality” is alleviated by static
design of experiments (e.g., Kuhfeld et al. (1994) [5], Hoyle
et al. (2009) [6] on D-efficient sampling) as well as adap-
tive methods (e.g., Toubia et al (2004) [7], Abernethy et al.
(2007) on adaptive sampling [8]). However, these methods
are all model-based, i.e., tests are designed so that they can
estimate effectively the preference models. Utility models
are prevalent in preference research, but the validity of such
models is still under discussion, see Netzer et al. 2008 [9].

An alternative way of capturing preferences without a
preference model is through the use of human-computer in-
teractions where the computer gradually refines its assess-
ment of people’s preferences based purely on user feedback.
Interactive evolutionary computation (IEC) [10] falls into
this category; a user evaluates design fitness and the evo-
lutionary scheme in then executed as in normal evolutionary
computation (e.g., Tokui et al. and Johanson et al. on music
design [11] [12], Kim et al. on dressing design [13], Kelly et
al. on vehicle silhouette design [14]). Two drawbacks of IEC
are that (i) the fitness requests force users to assign values for
each individual design, which is not a natural way for people
to express preferences and can cause user fatigue and hamper
convergence [10]; (ii) designs close to not-preferred designs
presented earlier are likely to appear in later iterations due to
the stochastic nature of IEC schemes.

In this paper, we introduce an interaction similar to those
in IEC but relieving the burden on users by requiring only
binary feedback. Users assign only “preferred” and “not-
preferred” labels to designs. The research goal is to inves-
tigate how a search algorithm should be designed to elicit
effectively the most preferred designs using this binary in-
formation with a tolerable interaction effort, namely, how to
converge with a small number of iterations. Like with IEC,
the focus here is not preference modeling and estimation but
structuring the interaction to speed up convergence with lim-
ited elicitation (data collection).

1.1 Problem Formulation

To start, we formulate the preference elicitation process
as an optimization problem by assuming that users can evalu-
ate designs with their own deterministic preference function.
The assumption we make here requires further scrutiny for
at least two reasons: (1) Using functions to model prefer-
ences implies transitivity; however, research (e.g., Petiot et
al. (2006) [15]) shows that such transitivity may not hold,
i.e., one can prefer A over B and B over C, but also C over
A; (2) even if transitivity holds, the function may not be de-
terministic during the interaction; as investigated in Mac-
Donald et al.(2008) [16], people may construct preference
on an as-needed basis and the underlying preference model
may change along with the change of the designs presented.
While with caution, we use this assumption based on the re-
ported success in both marketing and IEC research.

Next, we look at the forms of the preference function.

We examine two types of queries that can be presented to the
subject. We will show that user feedback from these queries
should be interpreted differently, leading to different forms
of preference function and thus different search strategies.
For clarification, a few definitions are first introduced below.
Throughout the paper we use the terms “human”, “user”,
“subject” or “consumer” interchangeably, as preference elic-
itation can be used in any of those contexts within the design
process.

We formulate the interaction problem as follows. Let
D C R? be the design space where any x € D represents a
design described with p variables. Assume that the user is
presented with [ design alternatives in each iteration and is
asked to select any number of designs as preferred and the
rest as not preferred. We represent this user response with
a function f(x1,{x;}\_,) : (D,D'~1) — [0,1] that maps the
design x, with respect to a fixed set of / — 1 designs {x;}_,,
to a 0-1 value, where 1 represents a preferred design and 0
represents a not-preferred one. The user is allowed to chose
none of the presented designs. Our objective is to locate a
“most preferred” region in the design space D defined as fol-
lows.

Definition 1. A design x; belongs to the most preferred re-
gion Dy C D if and only if V{x;}'_, € D'"' and VI =
2,3,..., we have f(x1,{x;}\,)=1.

Note that the / counter starts at 2 because we must have at
least two designs to enable comparison.

Let us now discuss two possible types of questions we
can use during a user-computer interaction. As noted later in
this paper, the difference between these two questions may
be subtle but important. The first question is: “Is there a pre-
ferred design in the presented set?”. The user is asked to pick
only preferred designs rather than comparing the designs in
the set. Thus, a design chosen as preferred will always re-
main so. We call this Query Type 1. Mathematically, this
means that the response function can be modeled as an indi-
cator function defined on D and independent of the parame-
ter set {x;}'_|, as given in Definition 2:

Definition 2. User response is the indicator function:

F(x,-) ::]ﬂ(x):{é: Zji;;’ (1)

The definition implies that each design within D is associ-
ated with a definite label and is independent of other accom-
panying designs. By Definition 1, 4 = D,. Thus, learning
user preference can be treated as a classification problem to
approximate D, by querying labels of sample points in D.
The methodology for solving this problem exists in statistical
learning. The term “active learning” was first coined by Tong
and Koller (2001) who showed that faster classification can
be achieved by querying samples iteratively [17]. By formu-
lating the classification task using Support Vector Machine
(SVM) (see Vapnik 1998 [18]), they proved that efficient
queries can be made by cutting the space of the classifier



coefficients into equal halves. Further research discussed the
balance between exploration (querying without using knowl-
edge gained) and exploitation (like Tong and Koller, query-
ing with all knowledge gained) to achieve more stable perfor-
mance on different problems (Osugi 2005 [19] and Baram
2004 [20]). A “locking” problem in using active learning
for adaptive sampling in a continuous space was reported by
Basudhar et al. [21] and a heuristic sampling method was
proposed to overcome it.

A drawback of Query Type 1 is that it prevents users
from selecting relatively better designs in the presented set
when none of them is close to their preference. Query Type
2 thus comes into play, namely, “Which designs in the set do
you prefer more?”. Introducing an arbitrary utility function
u(x): D — R, a design x is referred to be better than x;
if and only if u(x;) > u(x). Further, to transform the real-
valued utilities to binary choices, we introduce a mapping
M: R! — {0,1} that clusters a set of [ designs to binary
classes. The response function for this query type can be
then modeled as follows.

Definition 3. A response function f with utility and clus-
tering is defined as

Fx1 {xiYing) = M{u(xi) i1 @

If the utility function is continuous and bounded on D
and if there always exists a zero in the set M({u(x;)}._,), i.e,
a not-preferred design can always be distinguished, then D
only contains argmaxy u(x). Indeed, if there exists x € D,
and x # argmaxy u(x), then we can always find a series {x;}
such that u(x;) > u(x), Vi. Thus, x will be assigned a zero
and x ¢ D,.. With these modeling assumptions, Query Type
2 corresponds to a “black-box” optimization problem with
binary outputs.

In the present paper, we focus on search algorithms as-
sociated with Query Type 2 and leave Query Type 1 and ac-
tive learning algorithms for future research reporting. We
present two search algorithms: (1) SVM-Search, a heuristic
method that shrinks the search space by intersecting decision
boundaries from different iterations; (2) EGO search, a mod-
ification of the well-established efficient global optimization
(EGO) algorithm that samples the design space based on the
response surface of current observations. Results with sim-
ulated user interactions show that with only binary feedback
available, the SVM search algorithm is more effective than
a genetic algorithm, while EGO search is better than both.
Therefore, the EGO search algorithm is implemented in ac-
tual user tests for eliciting preferences in vehicle exterior
styling design, as discussed in Section 5.

The remainder of the paper is arranged as follows: In
Section 2 we review briefly SVM and EGO; in Sections 3 and
4 we describe the SVM and EGO search algorithms, respec-
tively, developed for Query Type 2, and discuss their perfor-
mance with simulated user tests; in Section 5 we implement

the EGO search for a three-dimensional vehicle styling de-
sign problem, present some early user tests, and discuss al-
gorithm convergence and some practical issues; we conclude
in Section 6.

2 Background
This section outlines the basic ideas in SVM and EGO.

2.1 Support Vector Machine

The formulation of SVM as a classification tool results
directly from the Vapnik — Chervonenkis (VC) theory which
states that to minimize the prediction error, a balance is
needed between minimizing the training error and control-
ling the model complexity [18]. This motivates the formula-
tion of SVM for binary classes (soft-margin SVM) based on
the observations {x;}._, and their labels {y;}!_; € {—1,1}\.
In the numerical setup of an SVM problem, we use binary
labels {—1, 1} rather than {0, 1}.

min

w,b,§

st yi(wixi+b) > 1§,
£>0,i=1,..,1L

i
ww+CY g, 3)

The solution to the problem in Eqn. (3) finds a linear deci-
sion function = w’x + b that minimizes a merit function
which combines both the training error ):f &; and the model
complexity w/ w with the parameter C. The resulting hyper-
plane w/x 4+ b = 0 separates the two classes and is called
the decision boundary. Further, since the solution of Eqn.
(3) depends only on the similarity matrix K;; = X! x;, Vi, j =
1,...,1, the linear classifier y = sign(w’ x +b) can be replaced
by any nonlinear one with a proper definition of the similar-
ity Kij = w(x;)Ty(x;), where y(-) : D — ¥ represents any
mapping of x to an unknown feature space ¥ . Such a method
is referred to as a kernel trick. The solution for Eqn. (3), with
a Gaussian kernel K;; = exp(—ASYM||x; —x;||3), can be sum-
marized as:

1
5(x) = Y yiozexp(—ASVM[|x — x;[[3) + b, (4)

i=1

where o; and b are solutions to the dual problem of Eqn.
(3). Throughout this paper, the Gaussian (or radial basis)
kernel is used with a default spread 1/p, and the LIBSVM
package [22] is used to solve the dual problem.

2.2 Efficient Global Optimization

EGO [23] is a global optimization method designed
for black-box objectives and constraints. In a minimization
problem, EGO queries a point that has low predicted objec-
tive value and high variance in the prediction. It is shown
that such a point has the highest expected improvement in
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Fig. 1. EGO operation concept

minimizing the objective. Fig. 1 illustrates how EGO works.
Refer to Jones et al. (1998) [23] and Sacks et al. (1989) [24]
for more details.

Denoting {x;}/_, as a set of / observations and {y;}'_,
as their responses, EGO estimates a kriging (generalized lin-
ear) model to predict the response y(x) as

$x) =p+r"R M (y—1p),
where:
. _ kriging || . 2 P
ri(x) = exp (AN x; —x|3) , Vi=1,...1,

Rij = exp (W x; —x;|3) . Vi j = 1.,

TR-1
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The forms of Eqn. (4) and Eqn. (5) are the same.
While the kriging model regresses real-valued observations,
the SVM model regresses binary ones. In the proposed EGO
Search algorithm further below where only binary observa-
tions are available, we replace the kriging model with an
SVM one.

The variance of the difference between the prediction y
and the true realization y can be derived following the model
estimations above as:

(1-1"R'r)?

2 _ Tp-—1
S (X)—[l*l‘ R r+w

] 6)

One can consider this variance as a continuous minimum dis-
tance function, i.e., s*>(x) is high when x is not surrounded by
existing samples and vice versa. With § and s> available,
EGO optimizes a merit function that evaluates the expected
improvement in the objective and its optimum is the next

A\ Preferred design
0O Not-preferred design

A A

A o Ij) A o

Samplesize = 3, iteration 1

Anew samplein the
previously “preferred” area

Fig. 2. SVM Search scattering and classification

query point, namely, the point most likely to decrease the
observed objective value further.

3 SVM Search Algorithm

SVM Search is a heuristic algorithm that aims to shrink
the design space during the interaction and thus force it to
converge in a few iterations. The algorithm attempts to ad-
dress the problem that, when the dimensionality of the de-
sign space becomes high, search convergence can become
too slow for practical user-computer interaction.

The proposed algorithm works as follows. Let the ini-
tial design space be 7 and that of iteration i be D;, where
i =1,...,k. The algorithm starts with /; random samples in
Do. A decision boundary g;(x) = 0 is generated from the
data set {x;,y;};, once user feedback is collected. Suppose
that m out of [; samples are labeled as y = 1; then [; —m
samples are drawn from the region g;(x) > 0. Each sample
maximizes the minimum distance from all existing samples.
The user is asked to label the combined set of these new sam-
ples and the m “winners” from the first stage. Once new la-
bels are assigned and old labels are updated, a new decision
boundary g>(x) = 0 is generated upon the current total data
set {X;,Yi}o1,—m-

We illustrate this process in Fig. 2. Samples with la-
bel “0” need no further update. To speed up convergence,
the decision boundary is recorded after p iterations, where p
is an adjustable parameter. Any further decision boundaries
drawn are combined with the recorded one in determining the
future sampling space. The method can thus be considered
as a way to balance exploitation (small p) and exploration
(large p). This space reduction procedure is illustrated in
Fig. 3. The algorithm terminates when the maximum num-
ber of iterations is reached or the design space constrained
by the decision boundaries is too small to contain random
samples. The pseudo code of this algorithm is shown in Fig.
4.

The “Scatter” subroutine (Fig. 5) generates / samples in
the design space constrained by the decision boundary set.
Each sample is generated so that its minimum distance to all
of the other labeled data is maximized. The subroutine “La-
bel” refers to human evaluations for actual user tests but is
regarded as a function call in the simulated interactions tests
that use known mathematical functions; it clusters objective
values of the sample set using K-means and labels them as



A Preferred design
O Not-preferred design

AN AN

Decision boundary at iteration p Current boundary at

iteration p<g<2p

Next sample only in the
intersection of two preferred areas.

Fig. 3. SVM Search design space reduction

Algorithm 1: SVM Search algorithm
input : Design space D, max_iteration ¢,
max_sample /
output: Decision boundary set {g(x) =0}

Initialization,
g-set < {}; // initialize decision boundary set

{x;}; = Scatter (g-set,D.l); / scatter | samples
in D constrained by g_set

{yj}i = Label ({x;},); / label the samples

rec = 0; // counter for recording decision boundaries
fori=2totrdo

Check if it is time to record current decision
boundaries;,

if rec == p then g_set = g, (x), rec = 0;

else rec =rec+1;

Check termination criteria;
gi(x) = sSVvM ({x;};, {v;}» svm_options);
// SVM Training

{xj}; =Scatter ({gser,gi(x)},D,l —m,X);

// Scatter samples assuming m winners in the
previous iteration, X is the total labeled sample
set

{yj}1 = Label ({x;},): / Update labels

end

Fig. 4. Proposed SVM Search algorithm

two classes. The subroutine “SVM?” calls the LIBSVM pack-
age [22], and svm_options stores parameters required by the
package. In this study, the soft-margin SVM weight C is set
at 10% and no parameter tuning is performed.

We compare results from simulated tests using SVM
Search and the Matlab GA toolbox with binary fitness. Re-
sults from a random sampling scheme are also presented as a
baseline performance. This latter algorithm merely samples
points randomly during the process, keeping better points
and dropping worse points. Some standard test functions,
namely, 2D Rosenbrock, Six-hump Camelback, and Branin
(see [25] and Eqn. (7) through (9) below), are used to simu-
late an interaction where the optimum of the function is the
preference the user has in mind. To measure algorithm per-
formance, we calculate the minimum gap between the global
optimum of a test function and the function values at the sam-
ples. We use this form of error because in real user interac-

Algorithm 2: Scatter sub-routine for SVM Search
input : Decision function set g_set, Design space D,
num_sample / — m, total labeled set X
output: New sample set {x’;},
while ||[{x';}|| </—m do
x' = Maximin (D, g_set, X); /X' has the
maximum minimal distance to X in D and g_set

X = {X,x'}; // Update the total sample set
end

Fig. 5. SVM Search algorithm: scatter subroutine

Table 1. Means and standard deviations of the final error from SVM
Search, GA and Random Search

Mean(Std) Rosenbrock Camelback Branin

SVM Search  4.12(6.77)  0.19(0.33) 1.40 (2.53)
GA 431(3.76) 1.02(0.83) 31.0(7.45)
Random 19.8 (13.5) 183 (184) 23.0(21.7)

tions, it is always possible to ask the question: “Among all
the preferred designs, which ones are the most preferred?”.
Due to the stochastic nature of all search algorithms, the per-
formance is reported as the mean and standard deviation of
the minimum gaps from ten separate runs. Table 1 compares
the performance of the three algorithms under maximum it-
eration number of 20 and maximum sampling size of 3 per
iteration. The results suggest that the proposed SVM search
algorithm has the best overall performance.
2D Rosenbrock function:

fley) = = ((1=x)? +100(y —2%)?),
D = {(x,y), x€[-1.5,1.5], ye [-0.5,1.5]}. (7)

2D Six-hump Camelback function:
2, X 24,2
flx,y) =— <(4—2.1x +§)x +xy+ (—4+4y7)y ) ,
D= {(xvy)a X € [7372]a ye [7372]}' (8)

2D Branin function:

2
flxy) =— ((y— 54% + % —6)?+10(1 — %)cos(x)—i— 10) ,
D= {(xvy)v X e [*53 10]3 ye [75710]}' (9)

4 EGO Search Algorithm
A search algorithm for user-computer interaction with
binary choice feedback can be built in the same fashion as



Algorithm 3: EGO Search Algorithm
input : Design space D, max_iteration ,
max_sample /
output: Optimal solution x*

// Initialize data set

X=0,y=0;

// Initialize a Latin Hypercube sample set of size [
{xj}]j:1 = LQScatter (D,1);

// Request user feedback

{yj}\—) = Label ({x;}._));

// Record the initial observation

X {x oy Dt

fori=2tor do

// Train accumulated data to get the decision

function
g(x) < Train (X, y, svm_options);

m = number of preferred designs in the previous
round;

// Keep the preferred designs from the previous
round in the sample set
for j=1tomdo
| x; = jthpreferred design from round i — 1;
end
// Scatter | —m new sample points to maximize
the merit function

for j=mtoldo
Find x; that maximizes the merit function

fmerit(g(x)uxa Q)); add X; to X;
end

// Request user feedback
{yiYo) =Label ({x;} )

Update the last / labels of y according to {yj}ézl;

end

Fig. 6. Proposed EGO Search algorithm

EGO. In the first iteration, the computer presents a sample
set based on a Latin Hypercube design. The user then evalu-
ates these samples and chooses the relatively preferred ones
(those with relatively higher utilities). The computer takes
in these binary choices as labels on the sample set. SVM is
run to find the optimal decision function. A merit function
combining this decision function and the mean square error
function is then optimized, and its solutions along with the
preferred samples from the previous round are used as the
samples for the next iteration. The algorithm continues until
the sample set becomes identical to the user selection or the
maximum number of iteration is reached. Fig. 6 provides a
summary of the steps.

Several points need to be discussed: (1) The merit func-
tion we use has the form finerit(X) = — (w19 +was?), where §
is the predicted utility and s® is the mean square error. The
weight wy is set to 1 and wy is decreasing along the iteration
as 7/i— 1, where ¢ is the maximum iteration number and i is
the current iteration number. This value is empirically set to

make the two function values of the same scale, and to start
the search with an emphasis on exploration and then shift
priority to exploitation of the decision function towards the
end; (2) when calculating s, the Gaussian spread parameter
Akriging s set to 10; (3) the weight C in the soft-margin SVM
is set at a high value of 10° since we consider all user input
to be correct and little training error is allowed; (4) both y
and s> are non-convex functions of x and thus optimizing the
merit function can be costly. Jones et al. proposed a branch
and bound algorithm that searches blocks in D with high up-
per bounds for both § and s2 [23]. It is not clear whether
this method will be effective when the dimensionality of D
is high, and further study is required. As an expedient alter-
native, the Matlab GA toolbox [26] is used to optimize the
merit function in the present study.

Fig. 7 shows results on test functions using EGO Search
and SVM Search following the same test setup as in Sec-
tion 3. For each algorithm and each function, ten tests are
executed and the error is calculated as the current minimum
gap from the theoretical optimum. The solid line and bars
show the mean error and its standard deviation for the EGO
Search, respectively, while the dotted ones show those for
the SVM Search algorithm. EGO Search has more reliable
performance overall than SVM Search especially for higher
dimensions.
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Fig. 7. Comparison between EGO Search and SVM Search.

5 Vehicle Exterior Styling Design Elicitation
Due to its observed performance in simulation, EGO
Search is chosen for implementation in an actual user study



involving vehicle exterior styling design. The purpose of the
study is to investigate whether the algorithm can successfully
help the subjects to search for a design that is close to a given
target.

5.1 Software Development

To enable real-time online human-computer interactions
on designing vehicle styles, a parametric three-dimensional
(3D) model incorporating 20 variables within the range of
[0,1] is programmed in WebGL, which is a context of the
canvas HTML element that provides a 3D graphics API im-
plemented in a web browser without the use of plug-ins. A
Java servelet implementing the proposed search algorithm
runs on the server side to parse user feedback and provide
queries for the next iteration. At the time of this writing,
readers may access “http://yirenumich.appspot.com” for the
EGO Search implementation. Firefox 5 and Google Chrome
10 (or later) are required to run these applications.

5.2 Convergence Test Setup

The test pages are set up at “/convergencetest.html” on
the website and all user data are submitted and can be re-
trieved at “/log.html”. In the test environment, a random and
a fixed target design are shown at the top of the web page.
Six initial random guesses are shown below the target, see
Fig. 8(a). The data retrieval page shows in the top division
how many tests have been conducted, followed by the accu-
mulated data from each iteration in that test. Each design
sampled thus far is visualized in the bottom division where
the preferred ones are highlighted. The red highlighted curve
represents the target in that test. Fig. 8(b) contains the data
visualization. The parameters set up in the implementation
are: ASYM = pkriging — (.05 and [wy,ws] = [1,1000]. These
parameters are set empirically and their value should be fur-
ther studied. Since Google Appengine limits the request time
at 30 seconds, we set the population limit to 10 and the num-
ber of generations to 500 in the GA implementation for the
global search inside the EGO Search iterations. This is a
fairly low-cost setup for a 20-dimensional space.

This online environment was developed for mass data
collection. As of this writing, more than six hundred anony-
mous interactions have been recorded. However, looking at
the collected data, we surmised that the anonymous users do
not necessarily follow the test instructions and thus, while in-
teresting, the collected results cannot be analyzed with con-
fidence. Consequently, we conducted a pilot test in an in-
terview setting with eight subjects from the University of
Michigan. Prior to initiating the test, the subjects were in-
structed on how they can view, rotate, zoom, pan, synchro-
nize and reset the viewpoint of each design rendering. They
were also made clearly aware of their task which was to pick
a set of designs that were relatively closer to the given target
in each iteration. Moreover, the subjects understood that they
could pick up to five designs as “preferred” and that they had
the option to pick nothing if none was relatively close to the
target. After the subjects submitted their final design, we ask
them to state whether they were “satisfied” or “not satisfied”

O—O

Target

Samplel Sample2 Sample3
[ W 3 oo [V Y
Sample4 Sample5 Sample6

Click to Finish Next

(a) Test environment

TestO | Testl Test2 Test3  Testd  Test5 Test6  Test7

012345678910111213 141516 ‘

o X A A
/\/ \\\\// \/ \/ \\// \\

(b) Test data visualization

Fig. 8. Online human-computer interaction interface and data visu-
alization. (a): The interactive environment at “/convergencetest.html”
allows the user to zoom, pan, rotate each design and updates the
guesses once the user hits the “Next” button; (b): The data visualiza-
tion window at “/log.html” has all user tests listed at the top, number
of iterations in the middle, and the cumulated data at the bottom. The
red curve represents the target design, the highlighted dark curve(s)
represent the preferred design at this point and the rest all not pre-
ferred.

with the test result. This information was also sent back to
the server.

5.3 User Data Analysis

While all users were satisfied with the test result accord-
ing to their responses, we need to examine whether the in-
teractions converged. We start by measuring the Euclidean
distance between each sampled design and the target in each
test, as illustrated in Fig. 9, since no explicit objective func-
tion is available and the gap between the optimum and the
objective value at each sample cannot be measured. In the
figure, samples towards the end of each test curve are those
generated in later iterations. The plot shows that later sam-
ples do not necessarily acquire lower distance values, and
thus convergence is not observed.

Nonetheless, visual comparison between targets and
user interaction results, as shown in Fig. 10, indicates that
users did submit designs close to their targets. One possi-
ble reason for this contradiction is that, when people com-
pare two different shapes, the difference is not measured in
the design (variable) space but in some feature space of the
shape, i.e., the perceived difference of a pair can be small
when its distance in the design space is large. We can try to
verify this reasoning by examining one user’s test data (data
“Test0” on the website). Fig. 11 compares the target design



and samples in the last iteration (iteration 17) which hint that
the algorithm understands that the user prefers a roof curve
design that has a steep front wind shield and an extended
hatchback. In fact, although distance-wise most of these de-
signs are off target, the first five have roof fashions visually
close to that of the target while the last one still meets the
description but has some variation of its own.

One then surmises that the user focuses mainly on
matching the roof style, and the algorithm indeed under-
stands what the user is searching for. In Fig. 12, we show
what the user selects in the first four iterations, and from
these selections we see a consistent user pursuit and conver-
gence of the search. In the same figure we also show that the
design with minimum Euclidean distance does not acquire
the roof style the user is looking for and is in fact not picked
in the iteration where it appears.

From the above observations, it appears that conver-
gence cannot be shown by the Euclidean distance to the tar-
get. Since the user focuses mainly on the roof style design,
we formulate a measure that differentiates the roof style as
follows. We define style features as seven lengths between
key control points of the roof silhouette. The lengths are de-
noted in Fig. 13 and the measure of difference is defined as
the Euclidean distance in the feature space spanned by the
seven lengths. With this new measure definition, we exam-
ine our earlier conclusion quantitatively. Fig. 14(a) and 14(b)
show scatter plots of the sampled designs in a reduced space
corresponding to the feature measure and the Euclidean mea-
sure accordingly. Each circle represents a sampled design
and the square represents the target. The inner radius of a
circle indicates when it first comes into existence while the
outer radius shows when it is abandoned, in both cases the
smaller the radius the earlier the event occurs.

Two observations are made: Firstly, most of the thick
circles, representing repeatedly selected designs, are close to
the target. This verifies the assumption that the user mainly
focuses on matching the roof design; secondly, the feature
map has most of the larger circles around the target while
smaller ones are away, while in the Euclidean map some of
the larger circles are scattered away from the target. The im-
plication is that while no knowledge about the user is posed
on the algorithm a priori, it “learns” what the user is looking
for and generates designs close to the target in the unknown
feature space, rather than in the explicit design space.

It should be noted that there are two factors that may
affect convergence. Recall that in EGO Search we have a
balance between exploration and exploitation. Every new
sample is forced to be away from existing ones, and there-
fore it may not be close to the target in the feature or the
Euclidean space. In fact, in the highlighted test data shown
above, the final submitted design (the one with Euclidean
distance to the target of 1.55, as shown in Fig. 11), appears
as early as the fourth iteration but nothing better is found af-
terwards. One can verify this from Fig. 14(a) where the final
submission is shown by the thickest circle close to the target.
Therefore, while a balance clearly should be made, how the
weights shall be tuned needs more study. Further, the GA
implementation in each EGO Search iteration uses a fairly

Test number
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10 20 30 40 50
Sample index

Fig. 9. Normalized euclidean distance from each sampled design to
the target in each test. The circled design is the one that submitted by
the user, while the triangle design has the lowest euclidean distance
to the target.
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Fig. 10. Visual comparison between user test results and the tar-
gets from side and perspective views.

low number of generations with a small population. There-
fore, the sampled point may not be the optimum of the merit
function and this can lead to an ineffective search.

5.4 Observed Issues in User Interactions

Besides the issues above, there are two other issues we
observed from the users in the pilot test. First, even with a
target given, the user can still exhibit inconsistent preference
during the interaction. For example, some of the users do not
realize that they should rotate the designs when evaluating
them, though they have been told they can do it. Once they
realize in the middle of the interaction process that they can
rotate the image, their perception of the shapes changes, and
so does their measure of difference between shapes. Sec-
ond, the specific users appeared rather insensitive to shape
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Fig. 11. Visual comparison between samples in the last iteration
and the target. Data generated from TestO on “log.html”. Euclidean
distances to the target are listed under the designs.
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Fig. 12. Designs labeled as preferred in the first four iterations, com-
pared with the target and the one with the minimum Euclidean dis-
tance within all samples. Euclidean distances to the target are listed
under the designs.

changes and would miss good designs (following their own
measure) during the interaction. Both of these “human mis-
takes” can confuse the algorithm and make it less effective.

6 Conclusions and Future Work

While incorporating user preference into an engineer-
ing optimization framework is appealing, its practical use is
still limited due to the difficulty of collecting preference data
on qualitative design aspects such as the automotive styling
problem. The approach proposed in this paper is a first step
towards addressing this issue.

An iterative human-computer interaction was devel-
oped: In each iteration, the computer presents a set of designs
to the user. The user then assigns binary labels to the designs
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Fig. 14. Samples from data “Test0” in the feature and Euclidean
space. Multidimensional scaling is applied to both measures to cre-
ate 2D visualization of the data.

to imply his or her preference. We showed that this pref-
erence elicitation task is akin to a “black-box” optimization
problem with binary outputs, and two search strategies were
proposed: SVM Search reduces the design space and forces
convergence; EGO Search combines exploitation of the ob-
served comparisons and exploration of the unsampled space.
The simulated test results showed that both proposed meth-
ods are better than GA when only binary feedback is avail-
able and that EGO Search outperforms SVM Search when
the dimensionality of the design space is larger. The EGO
Search algorithm was implemented for a 3D vehicle exterior
design application and the pilot tests with real users showed
that subjects can successfully locate designs close to their
targets.

There are several possibilities for improving and ex-
panding this work. Proper adaptive parameter setting within



the merit function in EGO Search is desirable and requires
further testing. The computational cost of global optimiza-
tion of the merit function needs to be reduced further before
the proposed algorithm can be used effectively for extensive
user interactions. It is also interesting to investigate whether
more accurate decision functions can be estimated by using
more than two classes. In fact, designs that are switched from
preferred to not-preferred should be treated differently from
designs that are not preferred from the beginning. The ro-
tation matrices recorded during the interaction can also pro-
vide insights on what features the user is sensitive to when
she evaluates the difference between a target and the sam-
ples. Such insights should be incorporated into the learning
process to create more accurate merit functions. Another im-
portant direction of future investigation is how to utilize pref-
erences collected from different individuals. Some prelimi-
nary tests show that the search can be made more efficient if
the algorithm incorporates history from previous users into a
current session. Finally, the data collected from an interac-
tive session can be treated as revealed choices from a simu-
lated market, and so combining search process records from
many users may provide insights and possibly lead to prefer-
ence models for groups of users or market segments.
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