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Global and local convergence

Global convergence refers to the ability of the algorithm to reach the
neighborhood of some local solution x∗ from an arbitrary initial point x0,
which is not close to x∗. The convergence of a globally convergent algorithm
should not be affected by the choice of initial point.

Local convergence refers to the ability of the algorithm to approach x∗,
rapidly from a point in the neighborhood of x∗.

convergence ratio γ:

I Linear convergence: ||xk+1 − x∗|| ≤ γ||xk − x∗||, 0 < γ < 1

I Quadratic convergence: ||xk+1 − x∗|| ≤ γ||xk − x∗||2, γ ∈ R

Newton’s method has quadratic convergence rate but is not globally
convergent; Gradient descent has global convergence but in some cases can
be inefficient.
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Line search: Bisection

Bisection is used to find the root of a single-variable function. We can apply
this method to the derivative of a function to find its stationary point (and
local minimum, how?)

Figure: Bisection
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Line search: Interpolation

A line search can also be carried out by interpolation. This is a simpler
version of the derivative-free response surface method for optimization. The
following figure shows the procedure of finding a local minimum by a series
of quadratic interpolations.

Figure: Bisection
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Inexact line search

Recall that in an iterative search process we update with

xk+1 = xk + αksk,

where sk is the current search direction and αk is the step size. An exact line
search finds the optimal αk (in the feasible domain) but can be costly and
unnecessary. Therefore an inexact line search is more commonly used that
finds an acceptable sufficient decrease from fk.
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The Armijo-Goldstein criteria

fk + εαgT
k sk ≥ fk+1

fk + (1− ε)αgT
k sk ≤ fk+1

Figure: Armijo-Goldstein criteria
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Armijo line search

Figure: Armijo rule

In Armijo line search, we construct a function

φ(α) = fk + αεgT
k sk,

and denote f (α) := f (xk +αsk). Starting with a large value, α is halved until
f (α) < φ(α), at which point it is guaranteed that f (α) < fk, since φ(α) < fk
by nature. Practical values for ε are 10−1 to 10−4.
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Curvature condition

The following curvature condition ensures that the slope has been reduced
sufficiently:

sT
k gk+1 ≥ ε2sT

k gk.

The Armijo rule and curvature condition together constitutes the Wolfe
conditions and are necessary to guarantee convergence. We will revisit the
curvature condition in Quasi-Newton methods.
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Exercise 7.10

A popular purely sectioning procedure is the golden section search.
Consider a function as shown in the figure with three points x1, x2, x3 already
placed with the ratio (x3−x2)/(x2−x1) fixed at τ , where τ>1 is a constant.
Insert the fourth trial point x4 so that both potential new brackets [x1, x4] and
[x2, x3] have intervals in the same ratio τ . Based on this construction,
evaluate the lengths of the intervals [x2, x4] and [x4, x3]. Prove that τ∼=1.618.
Write out the steps of an algorithm based on repeating this sectioning, noting
that in the figure the interval [x4, x3] is discarded.

Figure: Golden section line search
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Exercise 7.13

Consider the function f = 1− xexp(−x).

1. Find the minimum using the golden section method, terminating when
|xk+1 − xk| < 0.1 and starting from [0, 2].

2. Find the value(s) for x that satisfy the Armijo–Goldstein criteria with
ε1=0.1.

3. Find a value for x using the Armijo Line Search of Example 7.5.
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Quasi-Newton methods

Recall the Newton’s method

xk+1 = xk − αkH−1
k gk,

where Hk and gk are the Hessian and gradient at iteration k. The method has
quadratic convergence when Hk remains positive-definite. Quasi-Newton
methods build a positive-definite approximation of the Hessian using fk and
gk, and is regarded as the best general-purpose methods for solving
unconstrained problems.

Calculating Hk can be time consuming. Therefore we wish to approximate
Hk as Ĥk iteratively:

Ĥk+1 = Ĥk + something,

to get the second-order approximation at xk+1:

f (x) = f (xk+1) + gT
k+1∂xk+1 +

1
2
∂xT

k+1Ĥk+1∂xk+1, (1)

where ∂xk+1 = x− xk+1.
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The DFP method (1/3)

Three conditions need to be imposed on Equation (1).

First, Ĥ needs to be symmetric and positive-definite.

Second, the approximated f (x) must match the true gradients at xk and xk+1.
For xk+1, the approximation from Equation (1) naturally follows that

∂f (x)

∂x
|k+1 = gT

k+1.

Therefore the approximated gradient is the true gradient at xk+1.

For xk, considering a general search xk+1 = xk + αksk, we have

∂f (x)

∂x
|k = gT

k+1 − αksT
k Hk+1.

By rearranging terms we have

gk+1 − gk = αkHk+1sk (2)

Equation (2) is called the secant equation and key to approximate Hk+1.
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The DFP method (2/3)

Multiply both ends of the secant equation by sT
k to have

sT
k (gk+1 − gk) = αksT

k Hk+1sk > 0,

when the Hessian is positive-definite. This leads to the curvature condition.

In fact, the curvature condition ensures a positive-definite approximation Ĥ
of H.

However, there are infinitely many symmetric positive-definite matrices that
satisfy the secant equation.

The last condition: We will select Ĥk+1 that is closest to Ĥk in the weighted
Frobenius norm. Overall, we find Ĥk+1 that solves the following convex
problem

min
H

||Ĥ− Ĥk||F

subject to Ĥ = ĤT

gk+1 − gk = αkĤsk
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The DFP method (3/3)

Solve Problem (14) and denote B = H−1 to have the DFP update

BDFP
k+1 = Bk +

[
∂x∂xT

∂xT∂g

]
k
−
[

(B∂g)(B∂g)T

∂gTB∂g

]
k
, (3)

where ∂xk = αsk and ∂g = gk+1 − gk.

The Davidon-Fletcher-Powell (DFP) method was originally proposed by
W.C. Davidon in 1959.
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The BFGS method (1/3)

Instead of imposing conditions on the Hessian as in DFP, the BFGS method
directly work on the inverse of the Hessian. The secant equation therefore is
in the form

Bk+1(gk+1 − gk) = αksk.

The revised conditions lead to the BFGS update

BBFGS
k+1 = Bk +

[
1 +

∂gTB∂g
∂xT∂g

]
k

[
∂x∂xT

∂xT∂g

]
k
−
[
∂x∂gTB + B∂g∂xT

∂xT∂g

]
k
.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is more commonly
used than DFP.
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The BFGS method (2/3)

There are several ways to set the initial value for H (or B):

I A finite difference approximation at x0.

I Use the identity matrix.

I Use diag(λ1, λ2, ...), where λ captures the scaling of the variables.
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The BFGS method (3/3)

Algorithm: The BFGS method in unconstrained optimization

Given starting point x0, convergence tolerance ε > 0, and initial inverse
Hessian approximation B0:

while ||gk|| > ε

1. sk = −Bkgk

2. xk+1 = xk + αksk, where αk comes from a line search following the
Wolfe conditions

3. Let ∂x = xk+1 − xk and ∂g = gk+1 − gk

4. BBFGS
k+1 = Bk +

[
1 + ∂gT B∂g

∂xT∂g

]
k

[
∂x∂xT

∂xT∂g

]
k
−
[
∂x∂gT B+B∂g∂xT

∂xT∂g

]
k

5. k = k + 1

end-while

18 / 47



Outline convergence linesearch quasi-Newton active set penalty and barrier augmented Lagrangian SQP

Active set strategy (1/4)

We now discuss how we apply a reduced gradient algorithm to a problem
with inequality constraints. The difficulty is that we do not know at the
beginning which inequality constraints will be active at an optimal solution.
The strategy is to maintain a working set of active constraints (along with
equality constraints) and keep adding or deleting constraints in this working
set.
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Active set strategy (2/4)

Adding constraints

Starting at an initial feasible point and an initial working set, we minimize
the objective function subject to the equalities in the working set. When
hitting a new inequality constraint (here moving from x3 to x4), that
constraint will be added to the working set and the step size is reduced to
retain feasibility.
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Active set strategy (3/4)

Removing constraints

When arrived at a point where no progress is possible by adding constraints,
we check the KKT conditions and estimate the Lagrangian multipliers (since
we may not have arrived at an optimal solution yet, these multipliers are
only estimated). If the Lagrangian multipliers for some active constraints are
negative, these constraints will become candidate for deletion. A common
heuristic is to delete one constraint with the most negative multiplier. (Why?)
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Active set strategy with GRG (4/4)

The active set algorithm

1. Input initial feasible point and working set.

2. Compute a feasible search vector sk.

3. Compute a step length αk along sk, such that f (xk + αksk) < f (xk). If
αk violates a constraint, continue; otherwise go to 6.

4. Add a violated constraint to the constraint set and reduce αk to the
maximum possible value that retains feasibility.

5. Set xk+1 = xk + αksk.

6. Check the norm of reduced gradient. If not zero, go to step 2.
Otherwise, check if estimates of Lagrangian multipliers for active
constraints are positive or not. If not all positive, delete a constraint that
has the most negative multiplier, and go to step 2. Otherwise, terminate.
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Barrier method (1/2)

Instead of solving the constrained problem, we can construct a barrier
function to be optimized

T(x, r) := f (x) + rB(x), r > 0,

where B(x) := −
∑m

j=1 ln[−gj(x)] (logarithmic) or B(x) := −
∑m

j=1 g−1
j (x)

(inverse). The barrier method only works for problems with inequality
constraints.

Barrier function algorithm

1. Find an interior point x0. Select a monotonically decreasing sequence
{rk} → 0 for k→∞. Set k = 0.

2. At iteration k, minimize the function T(x, rk) using an unconstrained
method and xk as the starting point. the solution x∗(rk) is set equal to
xk+1.

3. Perform a convergence test. If the test is not satisfied, set k = k + 1 and
return to step 2.
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Barrier method (2/2)

When using the barrier method, we can estimate Lagrange multipliers as

I µj(rk) = −rk/gj, (for the logarithmic barrier)

I µj(rk) = −rk/g2
j (for the inverse barrier)

The actual multiplier can be obtained at the limit.

Note that this basic barrier method has a major computational difficulty: A
small rk leads to an ill-conditioned Hessian, making the optimization
difficult. (What can we do?)
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Penalty method (1/2)

A typical penalty function has the form

T(x, r) := f (x) + r−1P(x), r > 0,

where the penalty function P(x) can take a quadratic form

P(x) :=

m∑
j=1

[max{0, gj(x)}]2

for inequality constraints, and

P(x) :=

m∑
j=1

[hj(x)]2

for equality constraints.

Lagrange multipliers can be estimated as

µj(rk) = (2/rk) max{0, gj(x)k}

for a decreasing sequence {rk}.
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Penalty method (2/2)

An example of an ill-conditioned Hessian when using the penalty method
(from lecture notes of Nick Gould)

(a) r = 100 (b) r = 1 (c) r = 0.1 (d) r = 0.01

Figure: Quadratic penalty function for min x2
1 + x2

2 subject to x1 + x2
2 = 1
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Augmented Lagrangian (1/6)

Recall that the drawback of the penalty method (as well as the barrier
method) is that we can only find a good approximation of the true solution
when the penalty is high, i.e., r → 0, in which case the convergence of the
problem will suffer from ill-conditioned Hessian.

With that in mind, we introduce the augmented Lagrangian function:

Φ(x,λ, r) = f (x) + λTh(x) +
1
r
||h(x)||2

When the Lagrangian multipliers λ are close to their true values, a
reasonable small value of r allows us to find the true optimal solution x
without encountering an ill-conditioned Hessian.
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Augmented Lagrangian (2/6)

An example where we can find the true optimal solution for a constrained
problem without setting r → 0. (When we guessed correctly on λ∗, we can
find the solution x∗ without r → 0)

(a) λ = −0.5 (b) λ = −0.9 (c) λ = −0.99 (d) λ = λ∗ = −1

Figure: Augmented Lagrangian function for min x2
1 + x2

2 subject to x1 + x2
2 = 1 with

fixed r = 1
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Augmented Lagrangian (3/6)

Two ways of understanding augmented Lagrangian under equality
constraints only:

1. Shifted quadratic penalty function: The augmentation shifts the origin
of the penalty term so that an optimum value for the transformed function
can be found without the penalty parameter going to the limit.

(a) r = 0.01 (b) λ = λ∗ = −1, r = 1

Figure: Comparison between penalty and Augmented Lagrangian
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Augmented Lagrangian (4/6)

Two ways of understanding augmented Lagrangian under equality
constraints only:

2. Convexification of the Lagrangian function: If x∗ is a local solution for
the original problem, it follows KKT conditions and the second-order
sufficiency condition (which is what?). We want to construct a
unconstrained problem which has x∗ as its local solution. The first-order
necessary condition of this problem should be the original KKT condition
and its Hessian should be positive-definite. The augmented Lagrangian
function satisfies these requirements.

(a) λ = λ∗ = −1, r =∞ (b) λ = λ∗ = −1, r = 1

Figure: Comparison between penalty and Augmented Lagrangian
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Augmented Lagrangian (5/6)

The augmented Lagrangian method requires tuning of λ and r together in
some way so that {xk} → x∗.

I Check if ||h(x)|| ≤ ηk where {ηk} → 0.

I if so, set λk+1 = λk + 2h(xk)/rk and rk+1 = rk. It is proved that such a
series {λk} converges to λ∗.

I if not, set λk+1 = λk and rk+1 = τrk for some τ ∈ (0, 1). Often choose
τ = min{0.1,√rk}.

I update on ηk: ηk = r0.1+0.9j
k where j iterations since rk last changed.
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Augmented Lagrangian (6/6)

The augmented Lagrangian algorithm (from Nick Gould’s lecture notes)

1. Given r0 > 0 and λ0, set k = 0

2. While KKT conditions are not met

2.1 Starting from xs
k = xk−1, use an unconstrained minimization algorithm to

find an “approximate” minimizer xk so that ||∇xΦ(xk,λk, rk)|| ≤ εk

2.2 If ||h(xk)|| ≤ ηk, set λk+1 = λk + 2h(xk)/rk and rk+1 = rk

2.3 Otherwise set λk+1 = λk and rk+1 = τrk

2.4 k = k + 1. Set εk = rj+1
k and ηk = r0.1+0.9j

k where j iterations since rk last
changed

This method can be extended to inequalities with the aid of an active set
strategy. Details of implementation can be found in Pierre and Lowe (1975)
and Bertsekas (1982). An alternative way proposed by Nocedal and Wright
(2006) is to convert inequalities to equalities by introducing slack variables,
which can be optimized separately and eliminated.

32 / 47



Outline convergence linesearch quasi-Newton active set penalty and barrier augmented Lagrangian SQP

Exercise 7.27

Using the penalty transformation T = f + 1
2 rhTh, evaluate and sketch the

progress of the penalty method (sequential unconstrained minimization) for
the problem {min f = x, subject to h = x− 1 = 0}, with
r = 1, 10, 100, 1000. Repeat, using the augmented Lagrangian
transformation T = f + λTh+ 1

2 rh Th. (From Fletcher 1981.)
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Exercise 7.27 Solution

Penalty method: min x + 1/2r(x− 1)2

Stationary point: x∗(r) = 1− 1/r

Figure: Penalty method
34 / 47



Outline convergence linesearch quasi-Newton active set penalty and barrier augmented Lagrangian SQP

Exercise 7.27 Solution

Augmented Lagrangian method: min x + λ(x− 1) + 0.5r(x− 1)2

Stationary point: x∗(r) = 1− 1/r(1 + λ). Let λ0 = 0, r0 = 1, we have
x∗ = 0, h0 = −1. Then update λ1 = λ0 + r0h0 = −1 and r1 = r0 = 1. Then
we have x∗ = 1 and h1 = 0.

Figure: Augmented Lagrangian method
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What have we learned so far?

I Unconstrained optimization

I gradient descent with line search

I Newton’s method with line search

I trust region (why?)

I quasi-Newton (why?)

I Constrained optimization

I generalized reduced gradient

I barrier and penalty (why not?)

I augmented Lagrangian

I (active set)
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Comparisons

I Active set method should be attached to other algorithms and thus will
not be compared with.

I GRG is the most reliable but requires the most implementation effort. It
is also not the most efficient and requires a lot of function evaluation.

I Augmented Lagrangian is less reliable than GRG. A widely used
package of this method is LANCELOT, which deals with large-scale
optimization problems with bounds and equality constraints. The idea
of augmented Lagrangian is also used in SQP type of algorithm to
improve line search and Hessian approximation.

I SQP is the most widely used algorithm and can deal with large-scale
problems (up to the scale of 10000 variables and constraints). It is more
reliable than augmented Lagrangian and more efficient than GRG.
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The Lagrange-Newton Equations (1/2)

Consider the equality constrained problem

min f (x)

subject to h(x) = 0
(4)

The stationary condition for this problem is

∇L(x∗,λ∗) = 0T .

We may solve this equation using Newton-Ralphson to update x and λ∗:

[∇L(xk + ∂xk,λk + ∂λk)]
T = ∇LT

k +∇2Lk(∂xk, ∂λk)
T , (5)

where ∇LT
k =∇f T

k +∇hT
k λk and ∇2Lk = [∇2f + λT∇2h, ∇hT ; ∇h, 0]k.
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The Lagrange-Newton Equations (2/2)

Define W = ∇2f + λT∇2h and A = ∇h to have

∇2Lk = [W AT ; A 0]k.

Denote the step as sk := ∂xk = xk+1 − xk and set the left-hand side of
Equation (5) to zero to have

Wksk + AT
k λk+1 +∇f T

k = 0
Aksk + hk = 0

(6)

Equation (6) is referred to as a Lagrange-Newton method for solving the
constrained problem (4).

What are the conditions of W∗ and A∗ for the solution to be unique?
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Quadratic programming subproblem

Note that Equation (6) can be viewed as the KKT conditions for the
quadratic model

min
sk

q(sk) = fk +∇xLksk +
1
2

sT
k Wksk

subject to Aksk + hk = 0,
(7)

where ∇xLk = ∇fk + λT
k∇hk and the multiplier of problem (7) are ∂λk.

It can be shown that solving the Lagrange-Newton equations from Equation
(6) is equivalent to solving the quadratic programming subproblem (7).

Another equivalent QP subproblem is as follows

min
sk

q(sk) = fk +∇fksk +
1
2

sT
k Wksk

subject to Aksk + hk = 0,
(8)

which also gives a solution sk with multipliers λk+1 directly, rather than ∂λk.
What is the meaning of this QP subproblem?
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SQP Algorithm (without line search)

1. Select initial point x0, λ0; let k = 0.

2. For k = k + 1, solve the QP subproblem and determine sk and λk+1.

3. Set xk+1 = xk + sk.

4. If KKT condition not satisfied, return to 2.

Advantage:

I Simple

I Fast, locally quadratically convergent
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Enhancements of the basic algorithm (1/3)

The basic SQP algorithm may not have global convergence. For points far
from x∗, the QP subproblem may have an unbounded solution.

It is shown that for the QP subproblem to have a well-defined solution, the
following is needed:

I A has full rank

I W has to be positive definite in feasible perturbations

One possibility is to use the QP solution sk as a search direction and find the
step size αk that minimizes a merit function, which is a penalty function that
properly weighs objective function decrease and constraint violations.
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Enhancements of the basic algorithm (2/3)

One merit function (exact penalty function, Powell 1978a) that is widely
implemented has the following form

φ(x,λ,µ) = f (x) +

m1∑
j=1

wj|hj|+
m2∑

j=1

wj|max{0, gj}|,

where m1 and m2 are the numbers of equality and inequality constraints and
wj are weights used to balance the infeasibilities. The suggested values are

wj,0 = |λj| for k = 0 first iteration,
wj,k = max{|λj,k|, 0.5(wj,k−1 + |λj,k|)} for k ≥ 1,

where µj would be used for the inequalities.

One can also use a quadratic penalty function

φ(x,λ,µ) = f (x) +

m1∑
j=1

wjh2
j +

m2∑
j=1

wj(max{0, gj})2.
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Enhancements of the basic algorithm (3/3)

The evaluation of Wk can be approximated by a quasi-Newton method. The
BFGS approximation of a positive-definite Wk is as follows:

∂gk = θkyk + (1− θk)Ŵk∂xk, 0 ≤ θ ≤ 1,

where
yk = ∇L(xk+1,λk+1)T −∇L(xk,λk+1)T ,

and

θk =

{
1 if ∂xT

k yk ≥ (0.2)∂xT
k Ŵk∂xk,

(0.8)∂xT
k Ŵk∂xk

∂xT
k Ŵk∂xk−∂xT

k yk
if ∂xT

k yk < (0.2)∂xT
k Ŵk∂xk,

and ∂xk = xk+1 − xk, Ŵk is the current BFGS approximation to the Hessian
of the Lagrangian.
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Extension to inequalities

Active set can be applied in two ways

I An active set strategy may be employed on the original problem so that
the QP subproblem always have only equality constraints.

I The second way is to pose the QP subproblem with the linearized
inequalities included (Aksk + gk ≤ 0), and use an active set strategy on
the subproblem.

The merit function must then include all constraints, active and inactive, to
guard against failure when the wrong active set is used to determine the step
direction.
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Solving the quadratic subproblem

consider the QP problem

min
1
2

xTQx + cTx

subject to Ax− b = 0.
(9)

The Lagrange-Newton equations (KKT conditions) for this problem is(
Q AT

A 0

)(
x
λ

)
=

(
−c
b

)
When the Lagrangian matrix is invertible (e.g., Q positive-definite and A full
rank), the solution to the QP problem is(

x
λ

)
=

(
Q AT

A 0

)−1( −c
b

)
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exercise 7.30

Consider the problem of Example 5.9. Apply an SQP algorithm with line
search, starting from x0 = (1, 1)T . Solve the QP subproblem using (7.72)
and BFGS approximation (7.73), (7.74) for the Hessian of the Lagrangian.
Use the merit function (7.76) and the Armijo Line Search to find step sizes.
Perform at least three iterations. Discuss the results.

min x2
1 + (x2 − 3)2

subject to x2
2 − 2x1 ≤ 0
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