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Optimization with equality constraints (1/3)

A general optimization problem with only equality constraints is the
following:

min
x

f (x)

subject to hj(x) = 0, j = 1, 2, ...,m.

Let there be n variables. With m equality constraints, the simplest idea is to
eliminate m variables by using the equalities and solve for the rest n− m
variables. However, such elimination may not be analytically feasible in
practices.

Considering take a perturbation from a feasible point x, the perturbation ∂x
needs to be such that the equality constraints are still satisfied.
Mathematically, it requires the first-order approximations of the
perturbations for constraints be:

∂hj =
n∑

i=1

(∂hj/∂xi)∂xi = 0, j = 1, 2, ...m. (1)
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Optimization with equality constraints (2/3)

Equation (1) contains a system of linear equations with n− m degrees of
freedom. Let us define state variables as:

si := xi, i = 1, ...,m,

and decision variables as:

di := xi, i = m + 1, ..., n.

The number of decision variables is equal to the number of degrees of
freedom. Equation (1) can be rewritten as:

(∂h/∂s)∂s = −(∂h/∂d)∂d, (2)

where the matrix (∂h/∂s) is
∂h1/∂s1 ∂h1/∂s2 · · · ∂h1/∂sm

∂h2/∂s1 ∂h2/∂s2 · · · ∂h2/∂sm
...

...
. . .

...
∂hm/∂s1 ∂hm/∂s2 · · · ∂hm/∂sm

 ,
which is the Jacobian matrix with respect to the state variables. ∂h/∂d is
then the Jacobian with respect to the decision variables.
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Optimization with equality constraints (3/3)

From Equation (2), we can further have

∂s = −(∂h/∂s)−1(∂h/∂d)∂d. (3)

Equation (3) shows that for some perturbation for the decision variables, we
can derive the corresponding perturbation for the state variables so that
∂h(x) = 0 for first-order approximation. Notice that Equation (3) can only
be derived when the Jacobian ∂h/∂s is invertible, i.e., the gradients of
equality constraints must be linearly independent.

Since s can be considered as functions of d, the original constrained
optimization problem can be treated as an unconstrained problem for
minimizing

min
d

f (x) := z(s(d),d).

The gradient of this new objective function is

∂z/∂d = (∂f/∂d) + (∂f/∂s)(∂s/∂d).

Plug in Equation (3) to have

∂z/∂d = (∂f/∂d)− (∂f/∂s)(∂h/∂s)−1(∂h/∂d). (4)
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Lagrange multiplier

From Equation (4), a stationary point x∗ = (s∗,d∗)T will then satisfy

(∂f/∂d)− (∂f/∂s)(∂h/∂s)−1(∂h/∂d) = 0T , (5)

evaluated at x∗. Equation (5) and h = 0 together have n equalities and n
variables. The stationary point x∗ can be found when ∂h/∂s is invertible for
some choice of s.

Now introduce the Lagrange multiplier as

λT := −(∂f/∂s)(∂h/∂s)−1. (6)

From Equations (5) and (6), we can have

(∂f/∂d) + λT(∂h/∂d) = 0T and (∂f/∂s) + λT(∂h/∂s) = 0T .

Recall that x = (s,d)T , then for a stationary point we have

(∂f/∂x) + λT(∂h/∂x) = 0. (7)
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Lagrangian function

Introduce the Lagrangian function for the original optimization problem
with equality constraints:

L(x,λ) := f (x) + λTh(x).

First-order necessary condition: x∗ is a (constrained) stationary point if
∂L/∂x = 0 and ∂L/∂λ = 0.

This condition leads to Equation (7) and h = 0, which in total has m + n
variables (x and λ) and m + n equalities. The stationary point solved using
the Lagrangian function will be the same as that from the reduced gradient
method in Equation (5).

Define the Hessian of the Lagrangian with respect to x as Lxx.

Second-order sufficiency condition: If x∗ together with some λ satisfies
∂L/∂x = 0 and h = 0, and ∂xT

∗Lxx∂x∗ > 0 for any ∂x∗ 6= 0 that satisfies
∂h
∂x∂x∗ = 0, then x∗ is a local (constrained) minimum.
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Examples (1/4)

Exercise 5.2 For the problem

min
x1,x2

(x1 − 2)2 + (x2 − 2)2

subject to x2
1 + x2

2 − 1 = 0,

find the optimal solution using constrained derivatives (reduced gradient)
and Lagrange multipliers.

Exercise 5.3 For the problem

min
x1,x2

x2
1 + x2

2 − x2
3

subject to 5x2
1 + 4x2

2 + x2
3 − 20 = 0,

x1 + x2 − x3 = 0,

find the optimal solution using constrained derivatives and Lagrange
multipliers.
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Examples (2/4)

(A problem where Lagrangian multipliers cannot be found) For the problem

min
x1,x2

x1 + x2

subject to (x1 − 1)2 + x2
2 − 1 = 0,

(x1 − 2)2 + x2
2 − 4 = 0,

find the optimal solution and Lagrange multipliers. (Source: Fig. 3.1.2 D.P.
Bertsekas, Nonlinear Programming)
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Examples (3/4)

Important: In all development of theory hereafter, we assume that
stationary points are regular. We will discuss in more details the regularity
condition in the next section on KKT.

(A problem where Lagrangian multipliers are zeros) For the problem

min
x

x2

subject to x = 0,

find the optimal solution and Lagrange multipliers.

Important: In all development of theory hereafter, we assume that all
equality constraints are active.
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Examples (4/4)

Example 5.6 Consider the problem with xi > 0:

min
x1,x2,x3

x2
1x2 + x2

2x3 + x1x2
3

subject to x2
1 + x2

2 + x2
3 − 3 = 0.

find the optimal solution using Lagrangian.
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With inequality constraints

Let us now look at the constrained optimization problem with both equality
and inequality constraints

min
x

f (x)

subject to g(x) ≤ 0, h(x) = 0.

Denote ĝ as a set of inequality constraints that are active at a stationary
point. Then following the discussion on the optimality conditions for
problems with equality constraints, we have

(∂f/∂x) + λT(∂h/∂x) + µ̂T(∂ĝ/∂x) = 0T , (8)

where λ and µ̂ are Lagrangian multipliers on h and ĝ.
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Nonnegative Lagrange multiplier

The Lagrange multipliers (at the local minimum) for inequality constraints µ
are nonnegative. This can be shown by examining the first-order
perturbations for f , g and h at a local minimum for feasible nonzero
perturbations ∂x:

∂f
∂x
∂x ≥ 0,

∂ĝ
∂x
∂x ≤ 0,

∂h
∂x
∂x = 0. (9)

Combining Equations (8) and (9) we get µ̂T∂ĝ ≤ 0. Since ∂ĝ ≤ 0 for
feasibility, we have µ̂ ≥ 0.
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Regularity

A Regular point x is such that the active inequality constraints and all
equality constraints are linearly independent, i.e., ((∂ĝ/∂x)T , (∂h/∂xT))
should have independent columns.

Active constraints with zero multipliers are possible when x∗ is not a regular
point. This situation is usually referred to as degeneracy.

Under the assumption of nondegeneracy, zero multipliers can be associated
only with inactive constraints, i.e., µi = 0 if and only if gi < 0 and µi > 0 if
and only if gi = 0. Therefore we have for inequality constraints
µigi = 0, ∀i. Since g ≤ 0 and µ ≥ 0, we further have µTg = 0.
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The Karush-Kuhn-Tucker (KKT) conditions

For the optimization problem

min
x

f (x)

subject to g(x) ≤ 0, h(x) = 0,

its optimal solution x∗ (assumed to be regular) must satisfy

g(x∗) ≤ 0;
h(x∗) = 0;

(∂f/∂x∗) + λT(∂h/∂x∗) + µT(∂g/∂x∗) = 0T ,

where λ 6= 0,µ ≥ 0,µTg = 0.

(10)

A point that satisfies the KKT conditions is called a KKT point and may not
be a minimum since the conditions are not sufficient.

Second-order sufficiency conditions: If a KKT point x∗ exists, such that
the Hessian of the Lagrangian on feasible perturbations is positive-definite,
i.e., ∂xTLxx∂x > 0 for any nonzero ∂x∗ that satisfies ∂h

∂x∂x = 0 and
∂ĝ
∂x∂x = 0, then x∗ is a local constrained minimum.
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Geometry interpretation of KKT conditions

The KKT conditions (necessary) state that −∂f/∂x∗ should belong to the
cone spanned by the gradients of the active constraints at x∗.

The second-order sufficiency conditions require both the objective functon
and the feasible space be locally convex at the solution. Further, if a KKT
point exists for a convex function subject to a convex constraint set, then this
point is a unique global minimizer.
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Example

Example 5.10: Solve the following problem using KKT conditions

min
x1,x2

8x2
1 − 8x1x2 + 3x2

2

subject to x1 − 4x2 + 3 ≤ 0,
− x1 + 2x2 ≤ 0.

Example with irregular solution: Solve the following problem

min
x1,x2

− x1

subject to x2 − (1− x1)
3 ≤ 0,

− x1 ≤ 0,
− x2 ≤ 0.
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Sensitivity analysis (1/2)

Consider the constrained problem with local minimum x∗ and h(x∗) = 0
being the set of equality constraints and active inequality constraints. What
will happen to the optimal objective value f (x∗) when we make a small
perturbation ∂h, e.g., slightly relax (restrain) the constraints?

Use the partition ∂x = (∂d, ∂s)T . We have

∂h = (∂h/∂d)∂d + (∂h/∂s)∂s.

Assuming x∗ is regular thus (∂h/∂s)−1 exists, we further have

∂s =
(
∂h
∂s

)−1

∂h−
(
∂h
∂s

)−1(
∂h
∂d

)
∂d. (11)

Recall that the perturbation of the objective function is

∂f =

(
∂f
∂d

)
∂d +

(
∂f
∂s

)
∂s. (12)
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Sensitivity analysis (2/2)

Use Equation (11) in Equation (12) to have

∂f =

(
∂f
∂s

)(
∂h
∂s

)−1

∂h +

(
∂z
∂d

)
∂d. (13)

Notice that the reduced gradient (∂z/∂d) is zero at x∗. Therefore

∂f (x∗) =

(
∂f
∂s

)(
∂h
∂s

)−1

∂h

= −λT∂h.
(14)

To conclude, for a unit perturbation in active (equality and inequality)
constraints ∂h, the optimal objective value will be changed by −λ. Note that
the analysis here is based on first-order approximation and is only valid for
small changes in constraints.
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Generalized reduced gradient (1/2)

We discussed the optimality conditions for constrained problems.
Generalized reduced gradient (GRG) is an iterative algorithm to find
solutions for (∂z/∂d) = 0T .

Similar to the gradient descent method for unconstrained problems, we
update the decision variables by

dk+1 = dk − α(∂z/∂d)T
k .

The corresponding state variables can be found by

s′k+1 = sk − (∂h/∂s)−1
k (∂h/∂d)k∂dk

= sk + αk(∂h/∂s)−1
k (∂h/∂d)k(∂z/∂d)T

k .
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Generalized reduced gradient (2/2)

Note that the above calculation is based on the linearization of the
constraints and it will not satisfy the constraints exactly unless they are all
linear. However, a solution to the nonlinear system

h(dk+1, sk+1) = 0,

given dk+1 can be found iteratively using s′k+1 as an initial guess and the
following iteration

[sk+1]j+1 = [sk+1 − (∂h/∂s)−1
k+1h(dk+1, sk+1)]j.

The iteration on the decision variables may also be performed based on
Newton’s method:

dk+1 = dk − α(∂2z/∂d2)−1
k (∂z/∂d)T

k .

The state variables can also be adjusted by the quadratic approximation

sk+1 = sk + (∂s/∂d)k∂dk + (1/2)∂dT
k (∂

2s/∂d2)k∂dk.

The GRG algorithm can be used with the presence of inequality constraints
when accompanied by an active set algorithm. This will be discussed in
Chapter 7.
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