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Searching With No Flashlight 
An overview of derivative-free optimization 
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What is a Derivative-Free Algorithm? 

Derivative-free algorithm: 

 No gradient information necessary 

 “Smart” method of searching design space based upon some 

heuristics 

 

Outline: 

 Why use derivative-free algorithms? And why not? 

 Review of existing algorithms 
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Why Derivative-Free Algorithms? (1) 

 Expensive function evaluation 

 Noisy function evaluation 
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numerical noise unimodal function 
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Why Derivative-Free Algorithms? (2) 

 Multiple optima exist 
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Why Derivative-Free Algorithms? (3) 

 Disconnected feasible regions 

 Difficulty finding feasible points 
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disconnected feasible region 
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Why Derivative-Free Algorithms? (4) 

 Discrete choice variables / combinatorial problems 

 Material selection 

 Component selection 

 Routing problems 

 Integer Variables 
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Why NOT Derivative-Free Algorithms? 

Disadvantages 

 Slow to converge 

 Usually no guarantee of optimality 

 Often require tuning of many algorithm parameters 

 Constraint handling often through penalty functions 

 No guarantee of feasibility 

 Equality constraints are more difficult 
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Classes of Derivative-Free Algorithms 

Stochastic 

 Search depends on probability/random number generation; 

Each run of algorithm will take different search path and may 

find different “best point” 

Deterministic 

 Search follows distinct path (dependent on starting point, if 

specified);  Each run of algorithm will have same result 
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Existing Derivative-Free Algorithms 

Stochastic methods 

 Simulated annealing 

 Genetic algorithms 

 Particle swarm 
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Deterministic methods 

 DIRECT 

 Multilevel coordinate 

search (MCS) 

 Efficient global 

optimization (EGO) 

 NOMAD (hybrid method) 

 

 

 

and MANY others… 
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Survey of Derivative-Free Algorithms 

 Exhaustive survey by Rios and Sahinidic: 

 22 algorithms considered; 

 On over 500 problems (convex/nonconvex + smooth/nonsmooth) 
with bounds only; 

 With #variable from 1 to 30; 

 Limit of 2500 iterations and 600 CPU seconds. 

 

Conclusions 

 There always exist a few problems that a certain solver has the 
best solution quality. 
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http://egon.cheme.cmu.edu/ewocp/docs/SahinidisEWO_DFO2010.pdf 
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Topic for Today 

 DIRECT 

 Simulated annealing 

 Genetic algorithm 

 Efficient global optimization (EGO) 

 NOMAD 
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DIRECT Overview 

DIRECT stands for “Divided Rectangles” 

 Whole design space is sub-divided into rectangles; 

 The “best” and “largest” rectangles are further divided. 
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DIRECT with 2 Variables 
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1. Sample center of design space 
2. Select best candidate rectangles 

and divide into thirds along their 
longest dimensions 

3. Best candidate rectangles based 
upon:  
• best f(x) 
• lowest constraint violation 
• size of rectangle 

4. Iterate until max. number of 
function calls 
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DIRECT with 2 Variables 
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Rectangle size 

f(x) 
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DIRECT Pros/Cons 
 Advantages 

 Systematic searching balances global and local search 

 Deterministic, has the ability to be restarted where it left off 

 No parameters to tune 

 Can handle integer variables 

 Disadvantages 

 Dimensionality: For problems of 10 variables or larger, DIRECT has 
difficulties because of having to divide along each dimension 

 Slow local convergence 

 Cannot handle equality constraints 
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Simulated Annealing Overview 
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Design Space 

Initial Guess 

Random Move 

Good? Accept. Bad? Accept with 
some probability 
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Simulated Annealing Overview 

 Cooling of metals: want to find lowest energy state 

 Performs random search with some probability of 

accepting a worse point (to get out of local minima) 

 

 

 t is the temperature at the current iteration. t decreases 

along the iteration number. 
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Simulated Annealing - Constraints 

 Penalty function: 
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 Most common is quadratic penalty function, though others are possible 

 No guarantee of feasibility 

 For equality constraints, can use two inequalities for upper and lower bounds 

 Scaling of constraints and objective is ESSENTIAL to ensure feasibility with 

reasonable descent 
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Simulated Annealing – Pros/Cons 
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Advantages: 

 Doesn’t need to systematically cover space—better 
efficiency for large-dimension problems 

Disadvantages: 

 Doesn’t always cover the design space (quasi-global) 
 Dependent on starting point 
 Random directional search not very “smart” 

 Can repeat areas already searched 
 Can require large # of function calls 

 Many parameters to tune – algorithm performance is 
dependent on these parameters 
 Penalty weights 
 Temperature cooling schedule 
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Genetic Algorithm Overview 
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Design Space 

Initial Guesses 

Good 

Good 

Bad 
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Genetic Algorithm Overview 
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Design Space 

Good 

Good 

Children 
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Genetic Algorithm Overview 

 Starting with a population of random points in the 

feasible set, produce a new population of better points 

by parent selection, crossover, and mutation, until some 

conditions are satisfied. 
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GA - Parent Selection 

 Many methods: roulette wheel, tournament, elitism, etc. 

 Roulette wheel selection 

 Better individuals get larger portion of wheel 

 Random selection from wheel determines parents of next 
generation 
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GA - Parent Selection 

 Many methods: roulette wheel, tournament, elitism, etc. 

 Tournament selection 

 Randomly pick k chromosomes from the population 

 Pick the best one out of the subset 

 Iterate until all parents are picked 
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Each time pick three and compete 
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GA - Parent Selection 

 Many methods: roulette wheel, tournament, elitism, etc. 

 Elitism selection 

 Keep the best few chromosomes in the population 

 Can perform along with roulette wheel or tournament 
selection to prevent the solution from getting worse 
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GA - Crossover 

Crossover is used to propagate favorable genes through generations 

 Pure (for binary chromosome):  

 Piecewise combination of two parents 

 Arithmetic (for real chromosome):  

 Creates linear interpolation of two parents 

 Heuristic: Creates linear extrapolation of two parents in direction 

of better parent 

The choice of crossover scheme is case dependent.  
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GA - Mutation 

Mutation is used to introduce dramatically new designs  

Boundary: Sets one variable equal to its upper or lower bound 

Uniform: Sets one variable equal to a uniform random number 

(within its bounds) 

Non-uniform: Sets one variable equal to a non-uniform random 

number (centered on current value) 

Multi-non-uniform: All variables set to a non-uniform random 

number 

Incremental: Increments one variable a random amount (e.g., from 

0 to 1) 
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GA – Pros/Cons 

 Advantages 

 Draws from a large body of designs: global search 

 Good performance on combinatorial problems 

 Disadvantages 

 Difficulty balancing size of population/number of 
generations and overall time  

 Genetic operators may not create better designs 

 Not necessarily good at fine-tuning a design 
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EGO – Response Surface 

 How do you find the deepest part of the lake when you can’t 
see the bottom? 

 

 

 

 

 

 

 

  

 Take a series of depth measurements in strategic locations 
around the lake. 
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EGO – Response Surface 

 From an initial set of measurements, make a model of the 

bottom 

 

 

 

 

  

 Use the surrogate model to tell the boat driver where to 

measure the depth next 
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look here next! 
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2 
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EGO - Kriging 
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Kriging: A geostatistical techniques to interpolate the elevation 

of the landscape as a function of the geographic location at an 

unobserved location from observations of its value at nearby 

locations. 

Figure from http://resources.esri.com 
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EGO – Mean Square Error 

 The MSE function can be considered as a smoothed 

minimum distance function. It is an indicator of where 

has been sampled and where hasn’t. 
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Minimum distance function MSE function 
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EGO – The Merit Function 

 In each iteration of EGO, we have two functions of x:  

 1) the Kriging model    ; 2) the MSE function s. 

 The best place to sample next will have low prediction          

as well as high uncertainty s. The merit function reflects 

the “improvement” of the objective. 
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EGO - Example 
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EGO - Example 
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EGO - Example 
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EGO - Example 
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EGO - Example 

38 

Iteration #5 

0 1 2 3 4 5 6 7 8 9 10 
7 

7.5 

8 

8.5 

9 

9.5 

10 
Objective 

Kriging 

Merit 



Optimal Design Laboratory | University of Michigan, Ann Arbor 2013 

EGO – Pros/Cons 

 Advantages 

 Creates surrogate model during search, which is 
advantageous for expensive functions 

 Surrogate model can smooth out noise and discontinuities 

 Balances global/local search, similar to DIRECT 

 Disadvantages 

 Difficulty making surrogate model at high dimensions 

 Has to create surrogate model for each function, including 
constraints 

 Difficulty optimizing the merit function at high dimensions 

 

39 



Optimal Design Laboratory | University of Michigan, Ann Arbor 2013 

NOMAD – Overview  

 Belongs to Pattern Search 

 An implementation of the Mesh-Adaptive Direct Search 

(MADS) algorithm 

 Pattern search method: creates mesh and samples along 

mesh 
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NOMAD – Pattern Search 
 Generalized Pattern Search (GPS) 

 A number of points around the current point are evaluated 

 Best point becomes center point for the next iteration. 
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NOMAD – Constraint 
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• Bi-objective problem: minimize both 

the objective function,  f(x), and an 

aggregate constraint violation 

function: 

 

 

• Chooses Pareto set of Best 

feasible/Least infeasible points 

  )(,0max)( xcxh i
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h(x) 
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GPS– Example 
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GPS, Filter (least infeasible) 
Directions: 
Initial point: (0,0)T  
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GPS– Example 
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GPS– Example 
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GPS– Example 
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NOMAD – Pattern Search 

 Mesh-Adaptive Direct Search (MADS) 

 GPS shows limitations due to the finite choices of 
directions 

 MADS removes the GPS restriction by allowing (nearly) 
infinitely many poll directions 

 Two parameters defining the frame size:  

 mesh size        poll size 

 mesh size ≤ poll size 
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NOMAD – Pattern Search 
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GPS MADS 

Can’t find descent direction 
with finite poll directions 

Able to find descent direction 
due to infinitely many poll 
directions 

11 m 11 p

25.02 m 12 p

111  pm

5.022  pm

25.033  pm
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NOMAD 
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• Initial SEARCH step (optional) 

– Random search 

– Genetic algorithm 

– Latin hypercube 

– Orthogonal array 

– Etc. 

• POLL step (MADS/GPS) 

• Termination criteria based on 

mesh size 
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NOMAD – Pros/Cons 
 Advantages 

 Can use discrete and categorical variables 

 Can integrate other algorithms (e.g. DIRECT) as part of 
search 

 Good combination of Global/Local searching 

 Can use gradient information, if available 

 Disadvantages 

 Poll steps can require a large number of function 
evaluations in higher dimensions (though n+1 is no larger 
than finite differencing for a gradient algorithm) 

 Can terminate early if gets stuck in one area 
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The Bayesian Optimization Algorithm 

 The idea of Genetic Algorithm is to mix promising “building 

blocks” to achieve good solutions. 

 Traditional GA operations are shown to be inefficient in 

preserving partial solutions. 

 More sophisticated operations were introduced to address 

this problem. 
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The Bayesian Optimization Algorithm 

 BOA learns promising solutions (parents) using a Bayesian 

network and produces children that have similar properties as 

parents. 
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M. Hauschild, M. Pelikan, K. Sastry, D.E. Goldberg, Using Previous 
Models to Bias Structural Learning in the Hierarchical BOA 
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The Bayesian Optimization Algorithm 

 Advantages: 

 The learned network preserves good “building blocks” 

 Can handle large decomposable problems more efficiently 

 Disadvantages: 

 Training networks can be expensive 
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Heuristic 
Name 

Stochastic/ 
Deterministic 

Constraint 
Handling 

Termination 
Criteria 

Discrete? Availability 

Simulated 
Annealing 

Stochastic Weighted 
Penalty 

min. 
improvement 
tolerance 

Y Matlab, 
Optimus, iSight 

Genetic 
Algorithm 

Stochastic Weighted 
Penalty 

#generations/ 
fitness change 

Y Matlab, iSight 

DIRECT Deterministic Weighted 
Penalty? 

#function calls Y Matlab, Tomlab 

EGO Stochastic or 
Deterministic 

Response 
Surface 

ask Optimus N Tomlab, Optimus 
 

NOMAD Stochastic or 
Deterministic 

Pareto Set min. mesh size 
#function calls 

Y Matlab 


