Searching With No Flashlight An overview of derivative-free optimization

What is a Derivative-Free Algorithm?

Derivative-free algorithm:

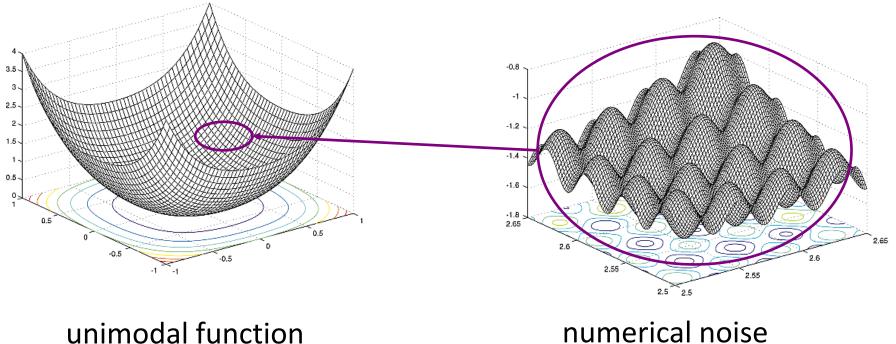
- No gradient information necessary
- "Smart" method of searching design space based upon some heuristics

Outline:

- Why use derivative-free algorithms? And why not?
- Review of existing algorithms

Why Derivative-Free Algorithms? (1)

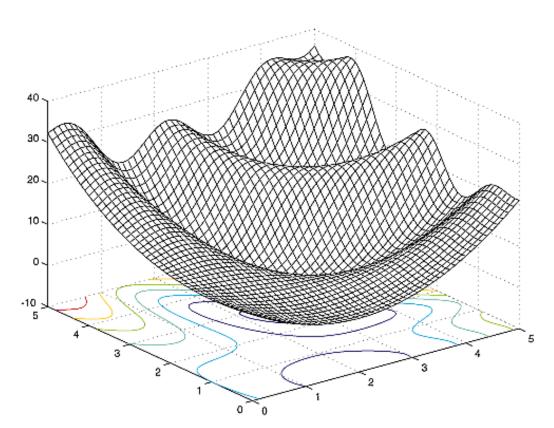
- **Expensive function evaluation**
- **Noisy function evaluation**



numerical noise

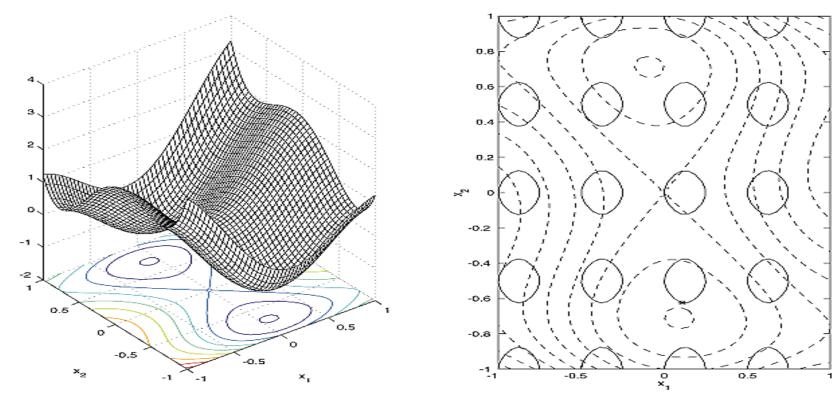
Why Derivative-Free Algorithms? (2)

Multiple optima exist



Why Derivative-Free Algorithms? (3)

- Disconnected feasible regions
- Difficulty finding feasible points



disconnected feasible region

Why Derivative-Free Algorithms? (4)

- Discrete choice variables / combinatorial problems
 - Material selection
 - Component selection
 - Routing problems
- Integer Variables

Why NOT Derivative-Free Algorithms?

Disadvantages

- Slow to converge
- Usually no guarantee of optimality
- Often require tuning of many algorithm parameters
- Constraint handling often through penalty functions
 - No guarantee of feasibility
 - Equality constraints are more difficult

Classes of Derivative-Free Algorithms

Stochastic

Search depends on probability/random number generation; Each run of algorithm will take different search path and may find different "best point"

Deterministic

Search follows distinct path (dependent on starting point, if specified); Each run of algorithm will have same result

Existing Derivative-Free Algorithms

Stochastic methods

- Simulated annealing
- Genetic algorithms
- Particle swarm

Deterministic methods

- DIRECT
- Multilevel coordinate search (MCS)
- Efficient global

optimization (EGO)

NOMAD (hybrid method)

and MANY others...

Survey of Derivative-Free Algorithms

Exhaustive survey by Rios and Sahinidic:

- 22 algorithms considered;
- On over 500 problems (convex/nonconvex + smooth/nonsmooth) with bounds only;
- With #variable from 1 to 30;
- Limit of 2500 iterations and 600 CPU seconds.

Conclusions

 There always exist a few problems that a certain solver has the best solution quality.

http://egon.cheme.cmu.edu/ewocp/docs/SahinidisEWO_DFO2010.pdf

Topic for Today

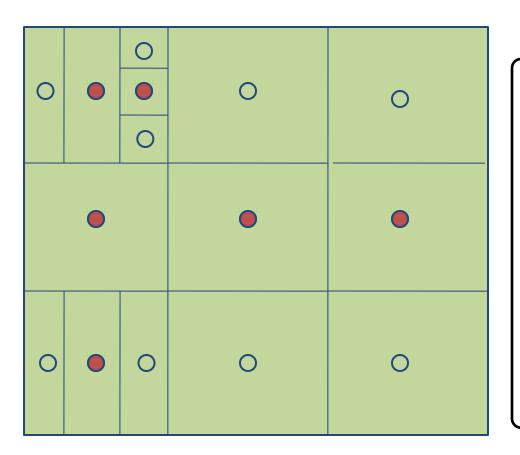
- DIRECT
- Simulated annealing
- Genetic algorithm
- Efficient global optimization (EGO)
- NOMAD

DIRECT Overview

DIRECT stands for "Divided Rectangles"

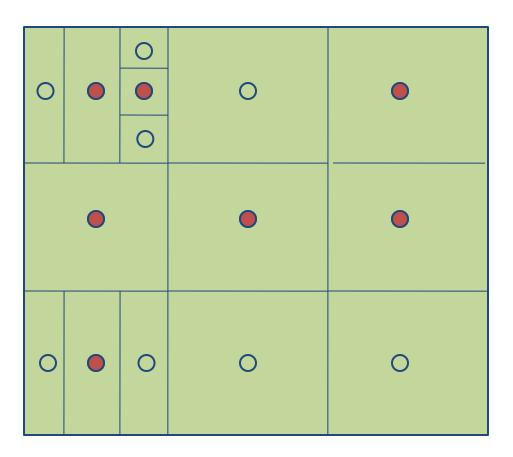
- Whole design space is sub-divided into rectangles;
- The "best" and "largest" rectangles are further divided.

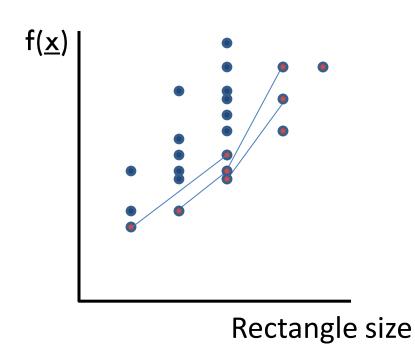
DIRECT with 2 Variables



- 1. Sample center of design space
- 2. Select best candidate rectangles and divide into thirds along their longest dimensions
- 3. Best candidate rectangles based upon:
 - best f(x)
 - lowest constraint violation
 - size of rectangle
- 4. Iterate until max. number of function calls

DIRECT with 2 Variables





Optimal Design Laboratory | University of Michigan, Ann Arbor 2013

DIRECT Pros/Cons

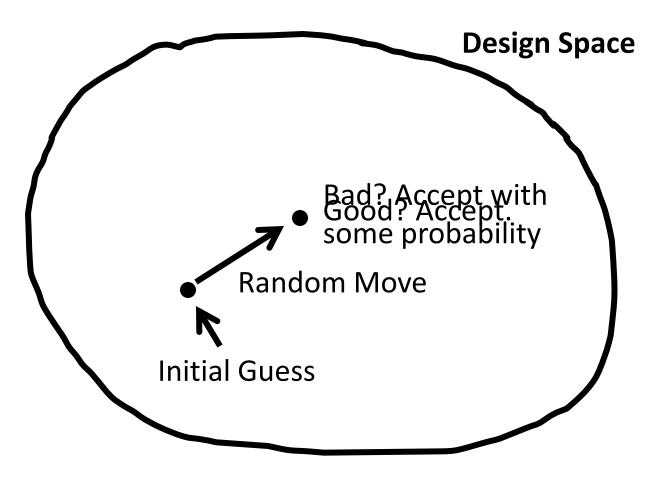
Advantages

- Systematic searching balances global and local search
- Deterministic, has the ability to be restarted where it left off
- No parameters to tune
- Can handle integer variables

Disadvantages

- Dimensionality: For problems of 10 variables or larger, DIRECT has difficulties because of having to divide along each dimension
- Slow local convergence
- Cannot handle equality constraints

Simulated Annealing Overview



Simulated Annealing Overview

- Cooling of metals: want to find lowest energy state
- Performs random search with some probability of accepting a worse point (to get out of local minima)

$$\operatorname{Prob}(\mathbf{x} \leftarrow \mathbf{y}) = \begin{cases} 1 & \text{if } \Delta f < 0 \text{ (better: downhill)} \\ \exp(-\frac{\Delta f}{t}) & \text{if } \Delta f \ge 0 \text{ (worse: uphill)} \end{cases}$$

 t is the temperature at the current iteration. t decreases along the iteration number.

Simulated Annealing - Constraints

Penalty function:

$$\min f_P(\overline{x}, Penalty) = f(\overline{x}) + \sum_{i=1}^m w_i \cdot \left(\max(0, g_i(\overline{x}))\right)^2$$

- Most common is quadratic penalty function, though others are possible
- No guarantee of feasibility
- For equality constraints, can use two inequalities for upper and lower bounds
- Scaling of constraints and objective is ESSENTIAL to ensure feasibility with

reasonable descent

Simulated Annealing – Pros/Cons

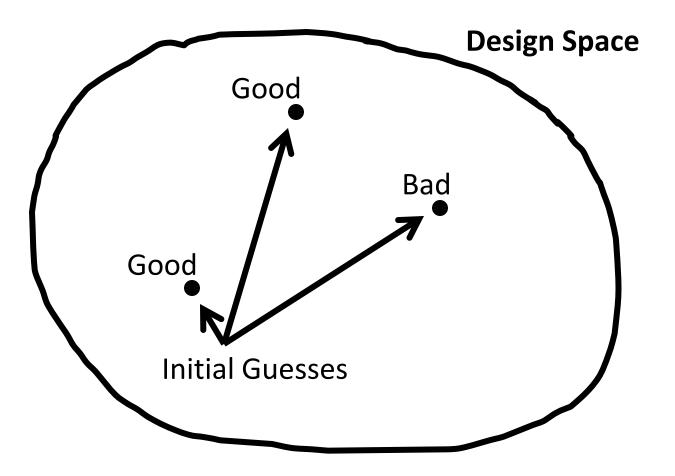
Advantages:

 Doesn't need to systematically cover space—better efficiency for large-dimension problems

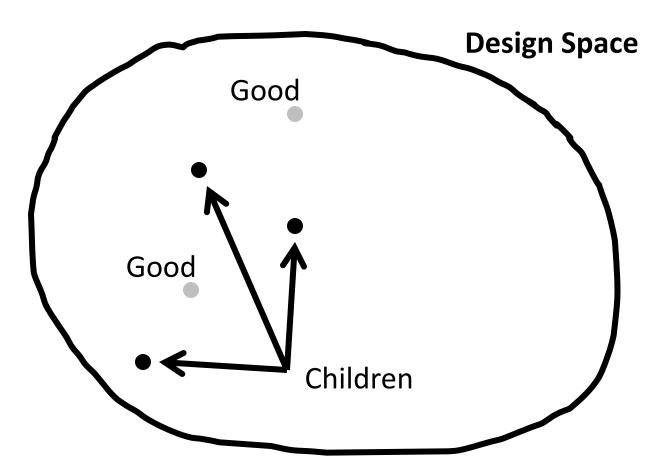
Disadvantages:

- Doesn't always cover the design space (quasi-global)
- Dependent on starting point
- Random directional search not very "smart"
 - Can repeat areas already searched
 - Can require large # of function calls
- Many parameters to tune algorithm performance is dependent on these parameters
 - Penalty weights
 - Temperature cooling schedule

Genetic Algorithm Overview



Genetic Algorithm Overview

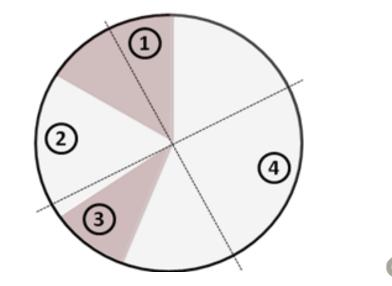


Genetic Algorithm Overview

Starting with a population of random points in the feasible set, produce a new population of better points by *parent selection, crossover,* and *mutation,* until some conditions are satisfied.

GA - Parent Selection

- Many methods: roulette wheel, tournament, elitism, etc.
- Roulette wheel selection
 - Better individuals get larger portion of wheel
 - Random selection from wheel determines parents of next generation



Optimal Design Laboratory | University of Michigan, Ann Arbor 2013

GA - Parent Selection

- Many methods: roulette wheel, tournament, elitism, etc.
- Tournament selection
 - Randomly pick k chromosomes from the population
 - Pick the best one out of the subset
 - Iterate until all parents are picked

Each time pick three and compete

GA - Parent Selection

- Many methods: roulette wheel, tournament, elitism, etc.
- Elitism selection
 - Keep the best few chromosomes in the population
 - Can perform along with roulette wheel or tournament selection to prevent the solution from getting worse

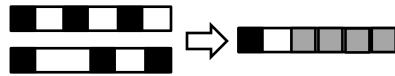
GA - Crossover

Crossover is used to propagate favorable genes through generations

Pure (for binary chromosome):

Piecewise combination of two parents

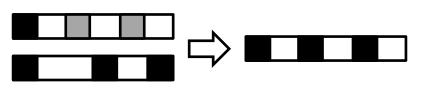
• Arithmetic (for real chromosome):



Creates linear interpolation of two parents

Heuristic: Creates linear extrapolation of two parents in direction

of better parent



The choice of crossover scheme is case dependent.

GA - Mutation

Mutation is used to introduce dramatically new designs

Boundary: Sets one variable equal to its upper or lower bound

Uniform: Sets one variable equal to a uniform random number (within its bounds)

Non-uniform: Sets one variable equal to a non-uniform random number (centered on current value)

Multi-non-uniform: All variables set to a non-uniform random number

Incremental: Increments one variable a random amount (e.g., from 0 to 1)

GA – Pros/Cons

Advantages

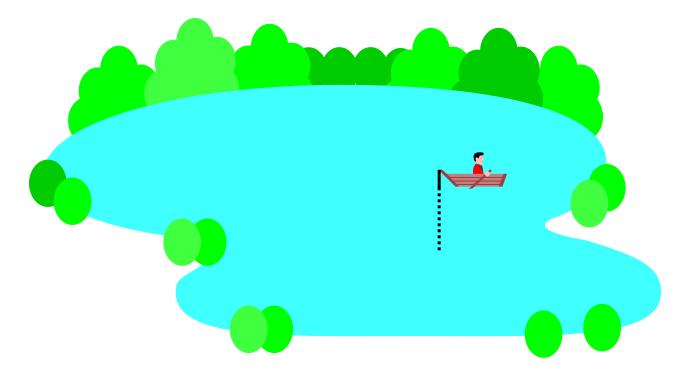
- Draws from a large body of designs: global search
- Good performance on combinatorial problems

Disadvantages

- Difficulty balancing size of population/number of generations and overall time
- Genetic operators may not create better designs
- Not necessarily good at fine-tuning a design

EGO – Response Surface

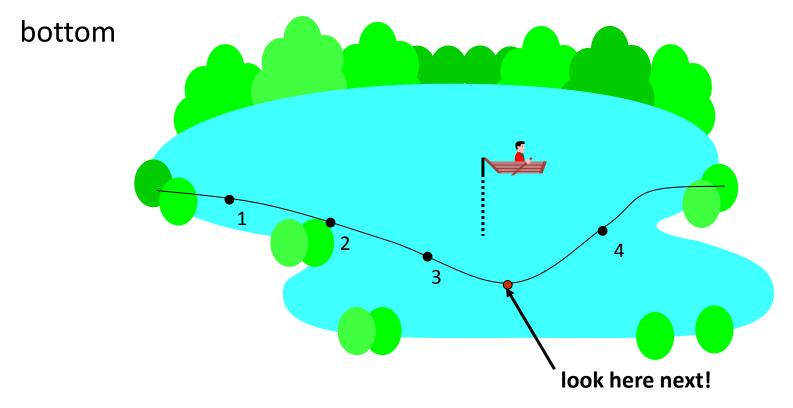
How do you find the deepest part of the lake when you can't see the bottom?



Take a series of depth measurements in strategic locations around the lake.

EGO – Response Surface

From an initial set of measurements, make a model of the

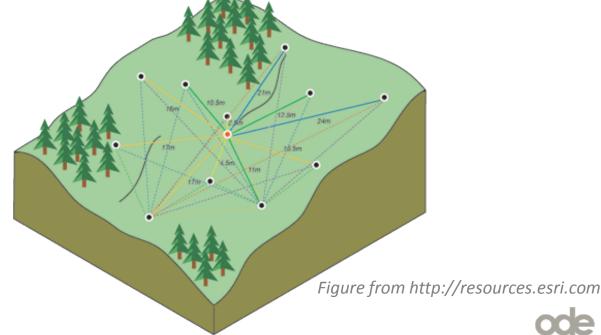


Use the surrogate model to tell the boat driver where to

measure the depth next

EGO - Kriging

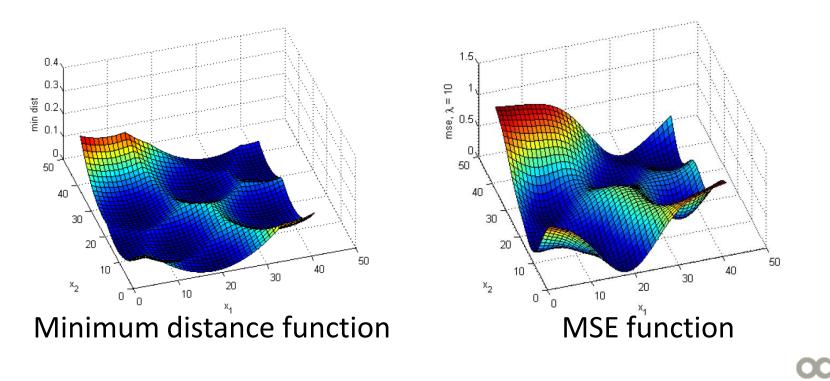
Kriging: A geostatistical techniques to interpolate the elevation of the landscape as a function of the geographic location at an unobserved location from observations of its value at nearby locations.



EGO – Mean Square Error

The MSE function can be considered as a smoothed

minimum distance function. It is an indicator of where has been sampled and where hasn't.



Optimal Design Laboratory | University of Michigan, Ann Arbor 2013

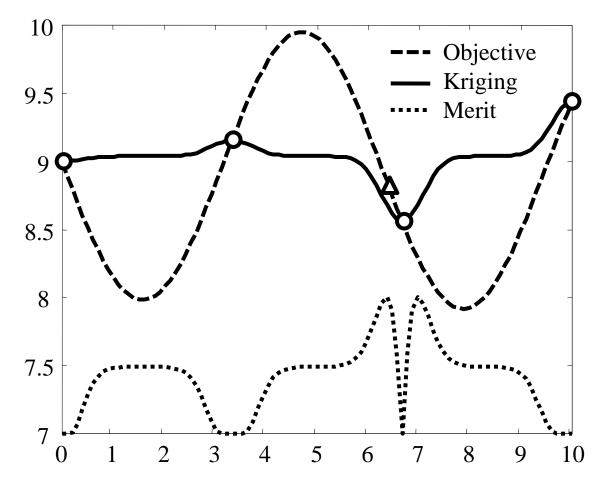
EGO – The Merit Function

- In each iteration of EGO, we have two functions of x:
- 1) the Kriging model \hat{y} ; 2) the MSE function s.
- The best place to sample next will have low prediction \hat{y} as well as high uncertainty *s*. The merit function reflects
- the "improvement" of the objective.

$$f_{merit}(x) = (f_{min} - \hat{y})\Phi\left(\frac{f_{min} - \hat{y}}{s}\right) + s\phi\left(\frac{f_{min} - \hat{y}}{s}\right)$$

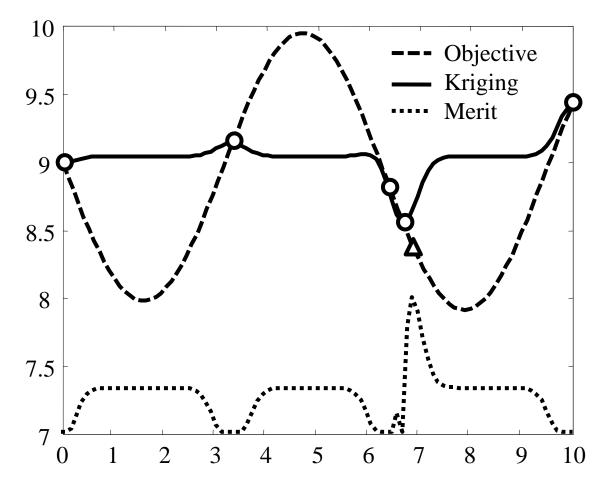
EGO - Example

Iteration #1



EGO - Example

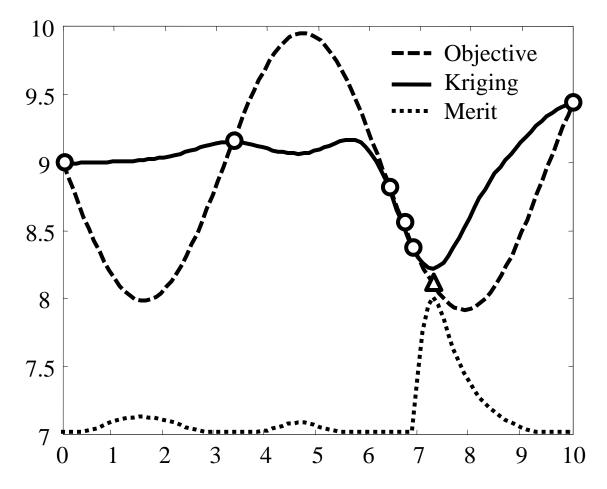
Iteration #2



Optimal Design Laboratory | University of Michigan, Ann Arbor 2013

EGO - Example

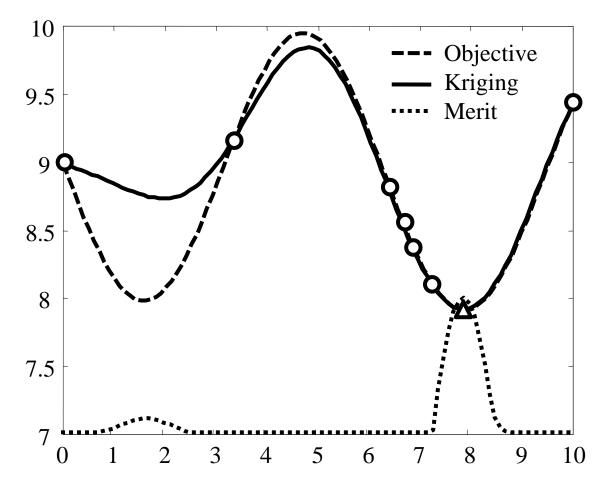
Iteration #3



Optimal Design Laboratory | University of Michigan, Ann Arbor 2013

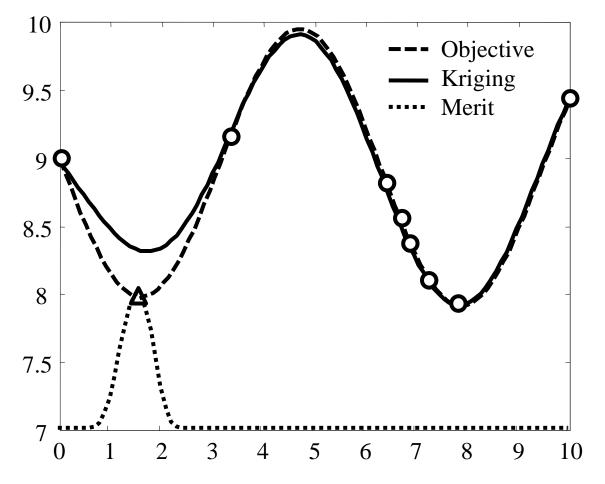
EGO - Example

Iteration #4



EGO - Example

Iteration #5



EGO – Pros/Cons

Advantages

- Creates surrogate model during search, which is advantageous for expensive functions
- Surrogate model can smooth out noise and discontinuities
- Balances global/local search, similar to DIRECT

Disadvantages

- Difficulty making surrogate model at high dimensions
- Has to create surrogate model for each function, including constraints
- Difficulty optimizing the merit function at high dimensions

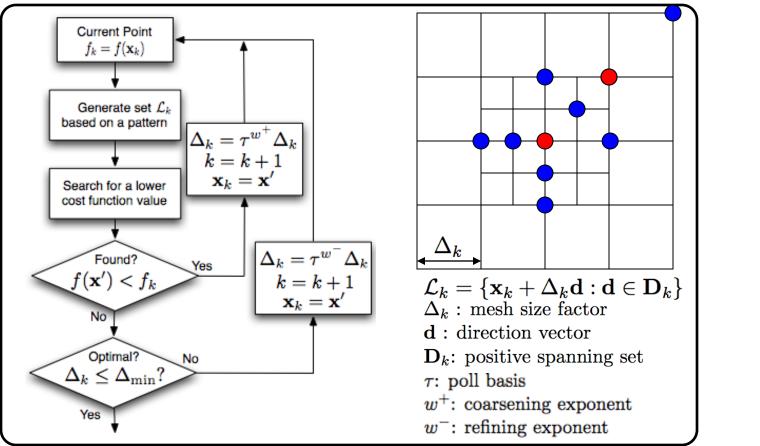
NOMAD – Overview

- Belongs to Pattern Search
- An implementation of the Mesh-Adaptive Direct Search (MADS) algorithm
- Pattern search method: creates mesh and samples along mesh

NOMAD – Pattern Search

Generalized Pattern Search (GPS)

- A number of points around the current point are evaluated
- Best point becomes center point for the next iteration.



Optimal Design Laboratory | University of Michigan, Ann Arbor 2013

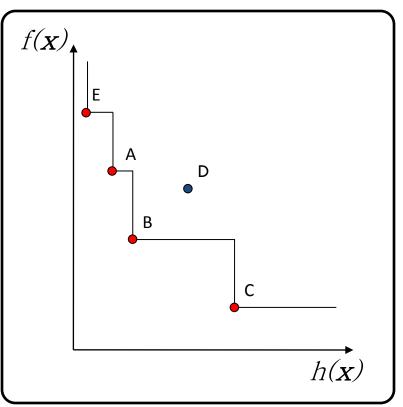
NOMAD – Constraint

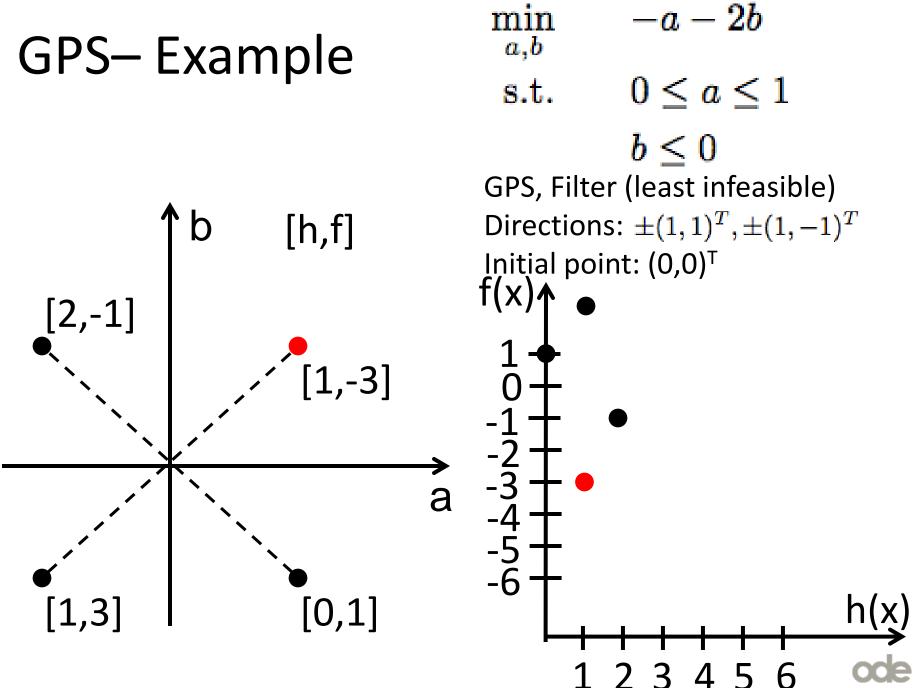
 Bi-objective problem: minimize both the objective function, *f(x)*, and an aggregate constraint violation

 f f f f

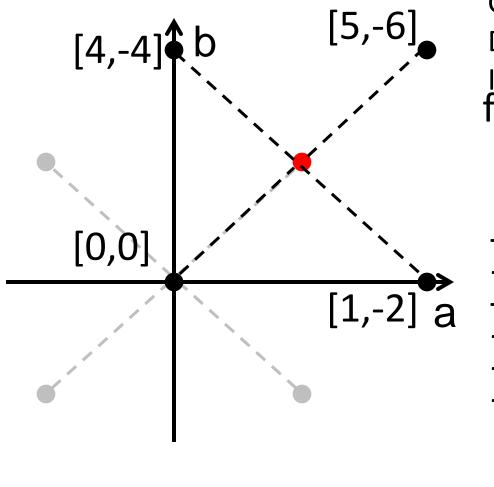
$$h(\bar{x}) = \sum \max\{0, c_i(\bar{x})\}$$

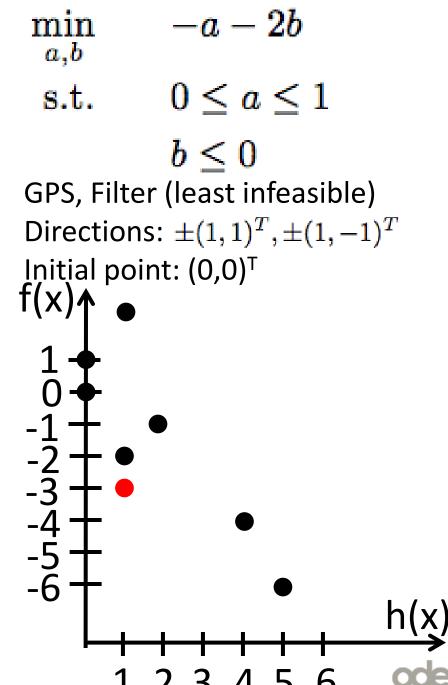
 Chooses Pareto set of Best feasible/Least infeasible points



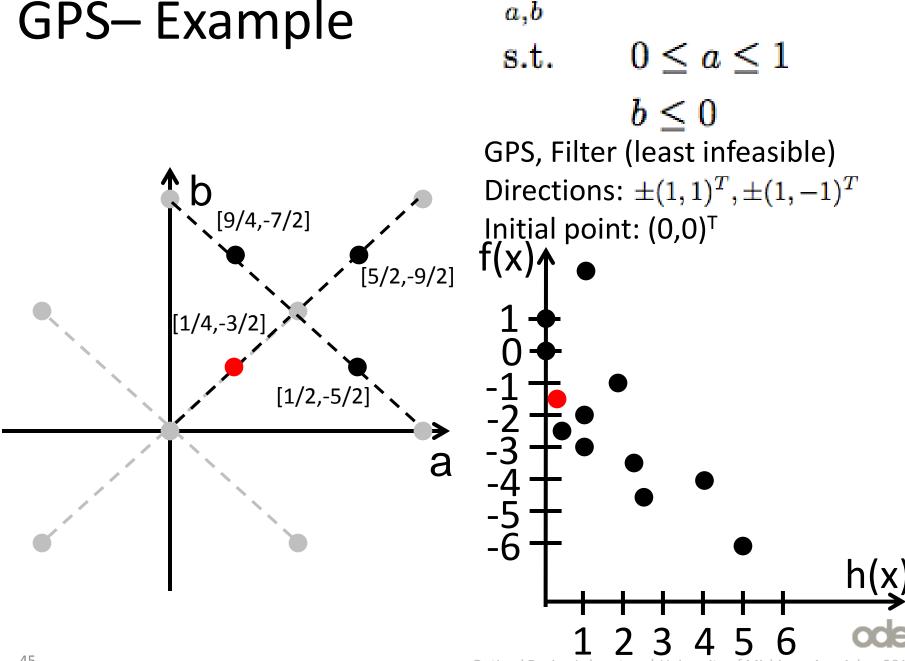


GPS– Example





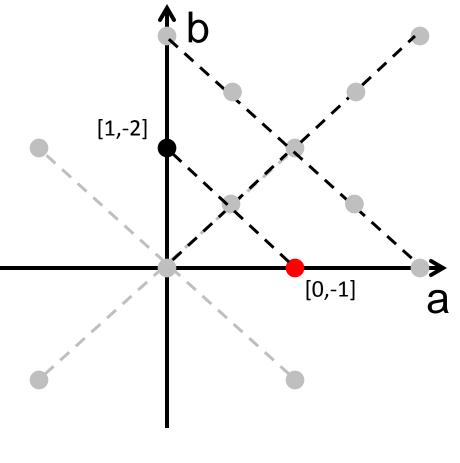
GPS– Example



mm

-a - 2b

GPS– Example

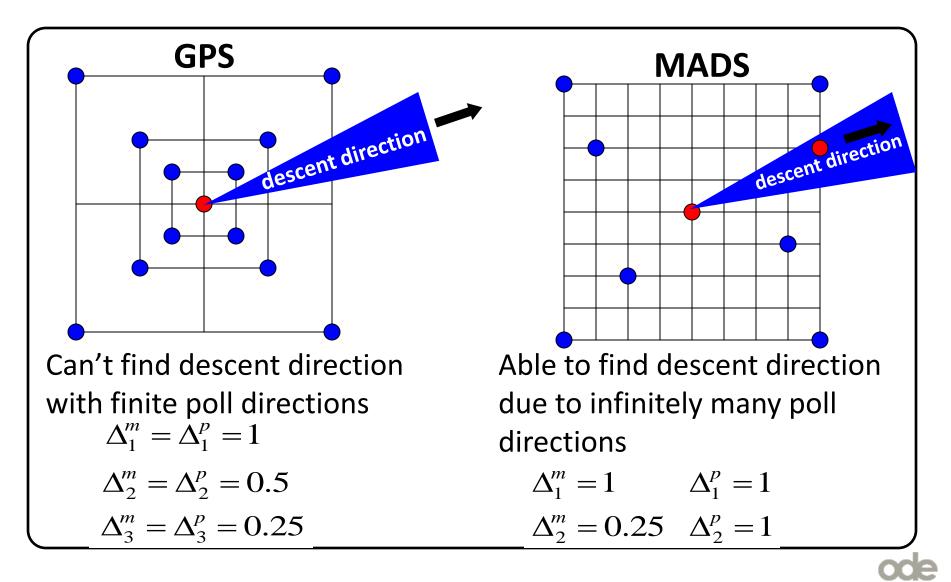


-a-2bmin a,b $0 \leq a \leq 1$ s.t. $b \leq 0$ GPS, Filter (least infeasible) Directions: $\pm (1, 1)^T, \pm (1, -1)^T$ Įņitial point: (0,0)[⊤] f(x)4 -6 Optimal Design Laboratory | University of Michigan, Ann Arbor 2013

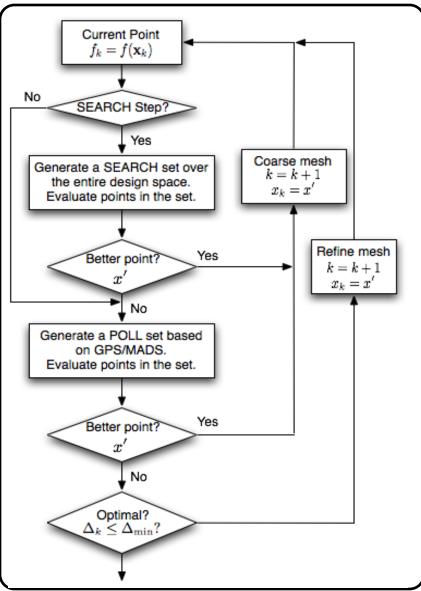
NOMAD – Pattern Search

- Mesh-Adaptive Direct Search (MADS)
 - GPS shows limitations due to the finite choices of directions
 - MADS removes the GPS restriction by allowing (nearly) infinitely many poll directions
 - Two parameters defining the frame size:
 mesh size Δ_k^m poll size Δ_k^p
 - mesh size ≤ poll size

NOMAD – Pattern Search



NOMAD



- Initial SEARCH step (optional)
 - Random search
 - Genetic algorithm
 - Latin hypercube
 - Orthogonal array
 - Etc.
- POLL step (MADS/GPS)
- Termination criteria based on mesh size

Optimal Design Laboratory | University of Michigan, Ann Arbor 2013

NOMAD – Pros/Cons

Advantages

- Can use discrete and categorical variables
- Can integrate other algorithms (e.g. DIRECT) as part of search
- Good combination of Global/Local searching
- Can use gradient information, if available

Disadvantages

- Poll steps can require a large number of function evaluations in higher dimensions (though n+1 is no larger than finite differencing for a gradient algorithm)
- Can terminate early if gets stuck in one area

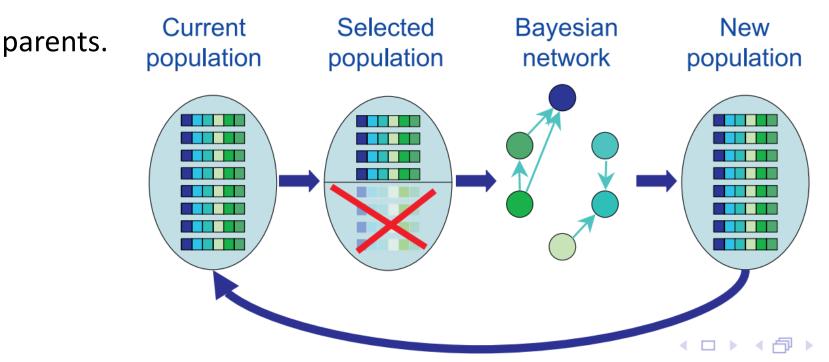
The Bayesian Optimization Algorithm

- The idea of Genetic Algorithm is to mix promising "building blocks" to achieve good solutions.
- Traditional GA operations are shown to be inefficient in preserving partial solutions.
- More sophisticated operations were introduced to address this problem.

The Bayesian Optimization Algorithm

BOA learns promising solutions (parents) using a Bayesian

network and produces children that have similar properties as



M. Hauschild, M. Pelikan, K. Sastry, D.E. Goldberg, Using Previous Models to Bias Structural Learning in the Hierarchical BOA

The Bayesian Optimization Algorithm

Advantages:

- The learned network preserves good "building blocks"
- Can handle large decomposable problems more efficiently

Disadvantages:

Training networks can be expensive

Heuristic Name	Stochastic/ Deterministic	Constraint Handling	Termination Criteria	Discrete?	Availability
Simulated Annealing	Stochastic	Weighted Penalty	min. improvement tolerance	Y	Matlab, Optimus, iSight
Genetic Algorithm	Stochastic	Weighted Penalty	#generations/ fitness change	Y	Matlab, iSight
DIRECT	Deterministic	Weighted Penalty?	#function calls	Y	Matlab, Tomlab
EGO	Stochastic or Deterministic	Response Surface	ask Optimus	N	Tomlab, Optimus
NOMAD	Stochastic or Deterministic	Pareto Set	min. mesh size #function calls	Y	Matlab