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Gradient descent on 2D Rosenbrock function
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Newton's method on 2D Rosenbrock
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Taylor series and Taylor’s theorem

Taylor series:

Assuming function f(x) has derivatives of any order, the Taylor series
expansion of x about the point x is

£ (x
f(x) _ Zf ( 0) (x _ xO)n’

n!
n=0

where £ (xo) is the nth-order derivative at x.
Taylor’s theorem:

Let N > 1 be an integer and let the function f(x) be N times differentiable at
the point xo, then

(n)
f n(!x0> (x _xO)n +o (|x _xOlN) ,

fx) =f(xo) + Z

The notation for the remainder, o (|x — x0|N ), means that the remainder is
=0.

olx—xo[")

small compared to |x — xo|". Formally, lim,_,,, =
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Local approximation

Approximations in R:

df (xo)
dx

df (x 1 d?
fd(xo)( )_’_5 2(2 )()C—X())2

(linear) F(x) = f(xo) +

(x —x0);

(quadratic)  f(x) =~ f(x0) +

Approximations in R”

(linear) f(x) =~ f(xo) + Z 8]2)\(;0) (xi — xi0);
i=1 !

(quadratic) f(x) =~ f(xo) + Z 8]:9(;0) (x; — xi0)
i=1 !
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Local approximation

The vector form of the approximations:

linear:
F(x) = f(x0) + g, (X — Xo);
and quadratic:

1) £(30) + 85 (% = %) + 5 (x = 50) Hiy (x — x0).

Here gy, and Hy, are the gradient and Hessian matrix of f(x) at xo. H is
square and symmetric. We also call 9f = f(x) — f(Xo) and 9x = X — X, the
function perturbation and perturbation vector (at X).

Exercise 1: Find the second-order “approximation” for
f(x) = (3 —x1)? + (4 — x)*. How many local minima do we have? What is
special about the Hessian?

Exercise 2: Find the quadratic approximation of the function:
F(x)=2x +x,77 + 20 +x,%, x€ R x#(0,0).

Is the Hessian positive definite? Is the problem bounded?
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The function has positive definite Hessian everywhere in its feasible domain,
but its function value is unbounded.
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Necessary and sufficient conditions

first-order necessary condition

Iff(x), x € X CR", has a local minimum at an interior point X,. of the set
X and if f(X) is continuously differentiable at X, then gy, = 0.

second-order optimality condition

Let f(x) be twice differentiable at the point X,.

1. (necessity) If X,. is a local solution, then gy, = 0 and Hessian is
positive-semidefinite.

2. (sufficiency) If the Hessian of f (x) is positive-definite at a stationary
point Xy, i.e., g, =0, then X, is a local minimum.
Exercise 3: Find the solution(s) for
minger:  f(X) = 4x} — dxyxp + 25 — 4x; + 2x;.

‘What about first-order sufficient condition?
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Proof for first-order necessary condition

From first-order approximation at X, we have:

F(x) =f(x.) + gl (x = %) + of|[x — x,|]). (1)

Let x = x, — g, . (Here we deliberately pick —gy, as the direction.) Since
X, is a local solution, we have f(x, — 1gx.) — f(x«) > 0, V¢ > 0. Take
Equation (1) into account to have:

F(x —tgx.) —f(%4) = g |2 + M_

0<
t t

Taking ¢ — 0, we have 0 < —||g. ||* < 0, requiring gx, = 0.
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Proof for second-order necessary condition

From second-order approximation at x,. we have:

fx) =f(x) + g (x—x.) + %(X = %) Hy. (x = x.) +o(|[x = x.[[*). @)

Let x = x,. + rd, where d is a unit direction, i.e., ||d|| = 1. Using first-order
necessary condition, and the fact that x, is a local solution, we have

f(xe +1d) — f(x.)

t

o(1?)

0< o

1
— EdTHX*d +

Taking t — 0, we have 0 < dTHx*d. Since d is arbitrarily chosen, we have
that Hy_ is positive semi-definite.
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The Hessian at the stationary point is positive semidefinite, but the stationary
point is not a local minimum.
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Convex sets and convex functions

Definition (convex set)

Aset S € R" is convex if, for every point x;, X; in S, the point
x(A\) =2+ (1 -XA)x;, 0<A<1

belongs also to the set.

Definition (convex function)

A functionf : X — R, X € R”" defined on a nonempty convex set X" is
called convex on X if and only if, for every x;, x, € X:

FOX2 + (1 = N)x1) < M(x2) + (1 = Nf(xp),
where 0 < \ < 1.

Exercise 4: Show the intersection of convex sets is convex; Show fi + f> is
convex on the set S if fi, f> are convex on S.

Exercise 5: Show that f(x;) > f(xo) + gL (x| — Xo) for a convex function.
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Convex sets and convex functions

A differentiable function is convex if and only if its Hessian is
positive-semidefinite in its entire convex domain. (hint: use Taylor’s theorem
to have f(x1) = f(xo) + gL (x1 — Xo) + 1/2(x; — Xo)" Hy(x)(x1 — Xo), for
x(A) = Ax; + (1 — N)xo.)

A positive-definite Hessian implies strict convexity, but the converse is
generally not true. Example?
first-order sufficient condition

If a differentiable convex function with a convex open domain has a
stationary point, this point will be the global minimum. If the function is
strictly convex, then the minimum will be unique.

If the function is convex but not strictly convex, will the minimum be
unique?

If the function is strictly convex, will the minimum be not unique?
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Gradient descent

In reality it is hard to solve for the optimal solution x, by hand because (i)
the system of equations from the first-order necessary condition may not be
easy to solve or (ii) the objective may not have an analytical form.
Therefore, we need an iterative procedure to produce a series Xg, X, ..., Xk
that converges to X..

One naive way is to use the following: x;4| = X¢ — g. Why?

Exercise 6: Try this method for the following problem

min  f(x) = x} — 2x2x, + x3
X

with xg = (1.1, 1)7. Explain your observation.
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Gradient descent

Results from Exercise 6. The gradient steps have correct directions but their
step sizes are not desirable.

19733



Outline preliminaries gradient descent Newton’s method Exercise Stabilization
000000000000 0080000 [eleYe] ooo ooo

Gradient descent

Setting the step to 0.001 will allow the algorithm to converge but only slowly
(takes more than 1000 steps to meet the target tolerance ||g|| < 107°)
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Armijo line search

fla)

~pla) = f + atg's,

> o

| Backtracking: shrink a starting from a large value until f(a)< () |

In Armijo line search, we construct a function

o(a) = fi + argl sy,

for some ¢ € [0.01,0.3] and denote f(«) := f(x; + asi). Starting with a
large value (default o« = 1), «v is reduced by o = ba for some b € (0.1, 0.8]
until f(a)) < ¢(a), at which point it is guaranteed that f(a) < f, since
¢(a) < fi by nature.
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Gradient algorithm with line search

Algorithm 1 Gradient algorithm

1: Select xg, € > 0. Compute gy. Set k = 0.
while ||g;|| > € do
3:  Compute o = arg mingsof(Xx — age).
4: Set X;1 = Xx — o
5: end while

»
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Newton’s method

Instead of using second-order approximation in line search, we can use it to
find the direction.

1
Jert = fio + 80X + Eﬁszkaxk-

The first-order necessary condition for minimizing the approximated f;
requires Xg+1 = Xg — Hk_lgk. If the function is locally strictly convex, this
iteration will yield a lower function value. Newton’s method will move
efficiently in the neighborhood of a local minimum where local convexity is
present.

H
-9

_H‘lg
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Newton’s method

Newton’s method also requires line search since the second order
approximation may not capture the actual function.

Algorithm 2 Newton’s method
1: Select xg, ¢ > 0. Compute gy and Hy. Set k = 0.
while ||g;|| > € do
3:  Compute o = argming,~of(xx — aHgy).
4. Set X1 = Xx — o Hy gy
5: end while

»

Exercise 7: Try this method for the following problem

. 1 1
min f(x) = gx? + x1x0 + Ex% + 2x,

withxo = (1, )7, (=1, —1)T, (=3,0)T.
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Newton’s method

Exercise 7 cont.: Different starting points lead to different solutions.
Newton’s method does not guarantee a descent direction when the objective
function is nonconvex.

277133
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Exercise (1/3)
4.6 Using the methods of this chapter, find the minimum of the function
f=(1—=x)%4+100(xs — x7)*.

This is the well-known Rosenbrock’s “banana” function, a test function for
numerical optimization algorithms.

4.8 Prove by completing the square that if a function f(x;, x,) has a
stationary point, then this point is

(a) alocal minimum, if
(0 /0x3) (6°f/0x3) — (0°f/0x10%,)° > 0 and  8*f /0% > O
(b) alocal maximum, if
(0 /0x3) (6°F/0x3) — (0°f/0x10%,)° > 0 and  8*f /0% < O
(c) asaddlepoint, if
(%F/0x3) (0°f/0x3) — (8% /0x10%,)” < 0.
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Exercise (2/3)
4.10 Show that the stationary point of the function
f= Zx% — 4x1x + 1.5x§ + x;

is a saddle. Find the directions of downslopes away from the saddle using
the differential quadratic form.
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Exercise (3/3)

4.12 Find the point in the plane x; + 2x; + 3x3 = 1 in R3 that is nearest to
the point (—1,0, 1)7.

4.15 Consider the function

f=—x+2xx0 + X7 + x5 — 3xtxy — 2x) + 2af.

(a) Show that the point (1, 1) is stationary and that the Hessian is
positive-semidefinite there.

(b) Find a straight line along which the second-order perturbation Jf is zero.
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Stabilization

Given a symmetric matrix My, the gradient and Newton’s methods can be
classed together by the general iteration

X1 = X — oMy g,

where My = I for gradient descent and My, = Hk_1 for Newton’s method.

By the first-order Taylor approximation fi41 — fy = —agi Mgy, descent is
accomplished for positive-definite M.

To ensure descent, we can use M, = (Hy + ukl)_l and select a positive
scalar .
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Trust region (1/2)

Newton’s method is faster if X is close to x,.. If the search length ||aHyg||
is really short or if Hy, is very different from the Hessian at x,., then —g; may
be a better direction to search.

Trust region algorithm: search using a quadratic approximation, but restrict
the search step within the trust region with radius A at x;:

1
min frgls+ isTHks
S

subjectto |[s|] < A

If ||s|| < A then
so=—H 'ge |[H gl < A,

orif ||s|| = A then

sk =—(Hg+pl) " 'ge,n >0, [|si]| = A.
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Trust region (2/2)

Given A, we evaluate at f(x; + s¢) and calculate the ratio

~fxe) —f (X + )

a —(gls + %S[Hksk)

The trust region radius is increased when r;, > 0.75 (indicating a “good

step”) and decreased when r;, < 0.25 (indicating a “bad step”).

Stabilization
ocoe

Algorithm 3 Trust region algorithm

1: Start with X and Ay > 0. Set k = 0.

2: Calculate the step sy.

3: Calculate the value f(x; + s¢) and the ratio .
4

: If f(xe + s¢) > f(xx), then set Agyy = Ap/2, Xpp1 = X, k =k + 1 and

go to Step 3.

5: Else, set Xgr1 = Xk + S If i < 0.25, then set Ay = Ay/2; if
ri > 0.75, then set Ay = 2Ay; otherwise set Ay = Ag. Setk = k+1

and go to Step 2.
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