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Taylor series and Taylor’s theorem

Taylor series:

Assuming function f (x) has derivatives of any order, the Taylor series
expansion of x about the point x0 is

f (x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n,

where f (n)(x0) is the nth-order derivative at x0.

Taylor’s theorem:

Let N ≥ 1 be an integer and let the function f (x) be N times differentiable at
the point x0, then

f (x) = f (x0) +

N∑
n=1

f (n)(x0)

n!
(x− x0)n + o

(
|x− x0|N

)
,

The notation for the remainder, o
(
|x− x0|N

)
, means that the remainder is

small compared to |x− x0|N . Formally, limx→x0

o(|x−x0|N)
|x−x0|N = 0.
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Local approximation

Approximations in R:

(linear) f (x) ≈ f (x0) +
df (x0)

dx
(x− x0);

(quadratic) f (x) ≈ f (x0) +
df (x0)

dx
(x− x0) +

1
2

d2f (x0)

dx2 (x− x0)2

Approximations in Rn

(linear) f (x) ≈ f (x0) +

n∑
i=1

∂f (x0)

∂xi
(xi − xi0);

(quadratic) f (x) ≈ f (x0) +

n∑
i=1

∂f (x0)

∂xi
(xi − xi0)

+
1
2

n∑
i=1

n∑
j=1

∂2f (x0)

∂xi∂xj
(xi − xi0)(xj − xj0)
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Local approximation

The vector form of the approximations:

linear:
f (x) ≈ f (x0) + gT

x0
(x− x0);

and quadratic:

f (x) ≈ f (x0) + gT
x0

(x− x0) +
1
2

(x− x0)THx0(x− x0).

Here gx0 and Hx0 are the gradient and Hessian matrix of f (x) at x0. H is
square and symmetric. We also call ∂f = f (x)− f (x0) and ∂x = x− x0 the
function perturbation and perturbation vector (at x0).

Exercise 1: Find the second-order “approximation” for
f (x) = (3− x1)2 + (4− x2)2. How many local minima do we have? What is
special about the Hessian?

Exercise 2: Find the quadratic approximation of the function:

f (x) = 2x1 + x−2
1 + 2x2 + x−2

2 , x ∈ R2, x 6= (0, 0)T .

Is the Hessian positive definite? Is the problem bounded?
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The function has positive definite Hessian everywhere in its feasible domain,
but its function value is unbounded.
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Necessary and sufficient conditions

first-order necessary condition

If f (x), x ∈ X ⊆ Rn, has a local minimum at an interior point x∗ of the set
X and if f (x) is continuously differentiable at x∗, then gx∗ = 0.

second-order optimality condition

Let f (x) be twice differentiable at the point x∗.

1. (necessity) If x∗ is a local solution, then gx∗ = 0 and Hessian is
positive-semidefinite.

2. (sufficiency) If the Hessian of f (x) is positive-definite at a stationary
point x∗, i.e., gx∗ = 0, then x∗ is a local minimum.

Exercise 3: Find the solution(s) for
minx∈R2 f (x) = 4x2

1 − 4x1x2 + x2
2 − 4x1 + 2x2.

What about first-order sufficient condition?
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Proof for first-order necessary condition

From first-order approximation at x∗ we have:

f (x) = f (x∗) + gT
x∗(x− x∗) + o(||x− x∗||). (1)

Let x = x∗ − tgx∗ . (Here we deliberately pick −gx∗ as the direction.) Since
x∗ is a local solution, we have f (x∗ − tgx∗)− f (x∗) ≥ 0, ∀t > 0. Take
Equation (1) into account to have:

0 ≤ f (x∗ − tgx∗)− f (x∗)
t

= −||gx∗ ||2 +
o(t||gx∗ ||)

t
.

Taking t→ 0, we have 0 ≤ −||gx∗ ||2 ≤ 0, requiring gx∗ = 0.
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Proof for second-order necessary condition

From second-order approximation at x∗ we have:

f (x) = f (x∗) + gT
x∗(x− x∗) +

1
2

(x− x∗)THx∗(x− x∗) + o(||x− x∗||2). (2)

Let x = x∗ + td, where d is a unit direction, i.e., ||d|| = 1. Using first-order
necessary condition, and the fact that x∗ is a local solution, we have

0 ≤ f (x∗ + td)− f (x∗)
t

=
1
2

dTHx∗d +
o(t2)

t2 .

Taking t→ 0, we have 0 ≤ dTHx∗d. Since d is arbitrarily chosen, we have
that Hx∗ is positive semi-definite.
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The Hessian at the stationary point is positive semidefinite, but the stationary
point is not a local minimum.
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Convex sets and convex functions

Definition (convex set)

A set S ∈ Rn is convex if, for every point x1, x2 in S, the point

x(λ) = λx2 + (1− λ)x1, 0 ≤ λ ≤ 1

belongs also to the set.

Definition (convex function)

A function f : X → R, X ∈ Rn defined on a nonempty convex set X is
called convex on X if and only if, for every x1, x2 ∈ X :

f (λx2 + (1− λ)x1) ≤ λf (x2) + (1− λ)f (x1),

where 0 ≤ λ ≤ 1.

Exercise 4: Show the intersection of convex sets is convex; Show f1 + f2 is
convex on the set S if f1, f2 are convex on S.

Exercise 5: Show that f (x1) ≥ f (x0) + gT
x0

(x1 − x0) for a convex function.
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Convex sets and convex functions

A differentiable function is convex if and only if its Hessian is
positive-semidefinite in its entire convex domain. (hint: use Taylor’s theorem
to have f (x1) = f (x0) + gT

x0
(x1 − x0) + 1/2(x1 − x0)THx(λ)(x1 − x0), for

x(λ) = λx1 + (1− λ)x0.)

A positive-definite Hessian implies strict convexity, but the converse is
generally not true. Example?

first-order sufficient condition
If a differentiable convex function with a convex open domain has a
stationary point, this point will be the global minimum. If the function is
strictly convex, then the minimum will be unique.

If the function is convex but not strictly convex, will the minimum be
unique?

If the function is strictly convex, will the minimum be not unique?
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Gradient descent

In reality it is hard to solve for the optimal solution x∗ by hand because (i)
the system of equations from the first-order necessary condition may not be
easy to solve or (ii) the objective may not have an analytical form.
Therefore, we need an iterative procedure to produce a series x0, x1, ..., xk

that converges to x∗.

One naive way is to use the following: xk+1 = xk − gk. Why?

Exercise 6: Try this method for the following problem

min
x

f (x) = x4
1 − 2x2

1x2 + x2
2

with x0 = (1.1, 1)T . Explain your observation.
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Gradient descent

Results from Exercise 6. The gradient steps have correct directions but their
step sizes are not desirable.
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Gradient descent

Setting the step to 0.001 will allow the algorithm to converge but only slowly
(takes more than 1000 steps to meet the target tolerance ||g|| ≤ 10−6)

20 / 33



Outline preliminaries gradient descent Newton’s method Exercise Stabilization

Armijo line search

In Armijo line search, we construct a function

φ(α) = fk + αtgT
k sk,

for some t ∈ [0.01, 0.3] and denote f (α) := f (xk + αsk). Starting with a
large value (default α = 1), α is reduced by α = bα for some b ∈ [0.1, 0.8]
until f (α) < φ(α), at which point it is guaranteed that f (α) < fk, since
φ(α) < fk by nature.
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Gradient algorithm with line search

Algorithm 1 Gradient algorithm
1: Select x0, ε > 0. Compute g0. Set k = 0.
2: while ||gk|| ≥ ε do
3: Compute αk = arg minα>0 f (xk − αgk).
4: Set xk+1 = xk − αkgk.
5: end while
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Figure: α = 0.001, w/o line search
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Figure: line search w/ t = 0.3, b = 0.2
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Newton’s method

Instead of using second-order approximation in line search, we can use it to
find the direction.

fk+1 = fk + gk∂xk +
1
2
∂xT

k Hk∂xk.

The first-order necessary condition for minimizing the approximated fk+1
requires xk+1 = xk −H−1

k gk. If the function is locally strictly convex, this
iteration will yield a lower function value. Newton’s method will move
efficiently in the neighborhood of a local minimum where local convexity is
present.

25 / 33



Outline preliminaries gradient descent Newton’s method Exercise Stabilization

Newton’s method

Newton’s method also requires line search since the second order
approximation may not capture the actual function.

Algorithm 2 Newton’s method
1: Select x0, ε > 0. Compute g0 and H0. Set k = 0.
2: while ||gk|| ≥ ε do
3: Compute αk = arg minα>0 f (xk − αHkgk).
4: Set xk+1 = xk − αkHkgk.
5: end while

Exercise 7: Try this method for the following problem

min
x

f (x) =
1
3

x3
1 + x1x2 +

1
2

x2
2 + 2x2

with x0 = (1, 1)T , (−1,−1)T , (−3, 0)T .
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Newton’s method

Exercise 7 cont.: Different starting points lead to different solutions.
Newton’s method does not guarantee a descent direction when the objective
function is nonconvex.

27 / 33



Outline preliminaries gradient descent Newton’s method Exercise Stabilization

Exercise (1/3)

4.6 Using the methods of this chapter, find the minimum of the function

f = (1− x1)2 + 100(x2 − x2
1)2.

This is the well-known Rosenbrock’s “banana” function, a test function for
numerical optimization algorithms.

4.8 Prove by completing the square that if a function f (x1, x2) has a
stationary point, then this point is

(a) a local minimum, if(
∂2f/∂x2

1

)(
∂2f/∂x2

2

)
−
(
∂2f/∂x1∂x2

)2
> 0 and ∂2f/∂x2

1 > 0;

(b) a local maximum, if(
∂2f/∂x2

1

)(
∂2f/∂x2

2

)
−
(
∂2f/∂x1∂x2

)2
> 0 and ∂2f/∂x2

1 < 0;

(c) a saddlepoint, if(
∂2f/∂x2

1

)(
∂2f/∂x2

2

)
−
(
∂2f/∂x1∂x2

)2
< 0.
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Exercise (2/3)

4.10 Show that the stationary point of the function

f = 2x2
1 − 4x1x2 + 1.5x2

2 + x2

is a saddle. Find the directions of downslopes away from the saddle using
the differential quadratic form.
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Exercise (3/3)

4.12 Find the point in the plane x1 + 2x2 + 3x3 = 1 in R3 that is nearest to
the point (−1, 0, 1)T .

4.15 Consider the function

f = −x2 + 2x1x2 + x2
1 + x2

2 − 3x2
1x2 − 2x3

1 + 2x4
1.

(a) Show that the point (1, 1)T is stationary and that the Hessian is
positive-semidefinite there.

(b) Find a straight line along which the second-order perturbation ∂f is zero.

30 / 33



Outline preliminaries gradient descent Newton’s method Exercise Stabilization

Stabilization

Given a symmetric matrix Mk, the gradient and Newton’s methods can be
classed together by the general iteration

xk+1 = xk − αMkgk,

where Mk = I for gradient descent and Mk = H−1
k for Newton’s method.

By the first-order Taylor approximation fk+1 − fk = −αgT
k Mkgk, descent is

accomplished for positive-definite Mk.

To ensure descent, we can use Mk = (Hk + µkI)−1 and select a positive
scalar µk.
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Trust region (1/2)

Newton’s method is faster if xk is close to x∗. If the search length ||αHkgk||
is really short or if Hk is very different from the Hessian at x∗, then −gk may
be a better direction to search.

Trust region algorithm: search using a quadratic approximation, but restrict
the search step within the trust region with radius ∆ at xk:

min
s

f ≈ gT
k s +

1
2

sTHks

subject to ||s|| ≤ ∆

If ||s|| ≤ ∆ then
sk = −H−1

k gk ||H−1
k gk|| < ∆,

or if ||s|| = ∆ then

sk = −(Hk + µI)−1gk, µ > 0, ||sk|| = ∆.
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Trust region (2/2)

Given ∆, we evaluate at f (xk + sk) and calculate the ratio

rk =
f (xk)− f (xk + sk)

−(gT
k sk + 1

2 sT
k Hksk)

The trust region radius is increased when rk > 0.75 (indicating a “good
step”) and decreased when rk < 0.25 (indicating a “bad step”).

Algorithm 3 Trust region algorithm
1: Start with x0 and ∆0 > 0. Set k = 0.
2: Calculate the step sk.
3: Calculate the value f (xk + sk) and the ratio rk.
4: If f (xk + sk) ≥ f (xk), then set ∆k+1 = ∆k/2, xk+1 = xk, k = k + 1 and

go to Step 3.
5: Else, set xk+1 = xk + sk. If rk < 0.25, then set ∆k+1 = ∆k/2; if

rk > 0.75, then set ∆k+1 = 2∆k; otherwise set ∆k+1 = ∆k. Set k = k+1
and go to Step 2.
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